DOI QR코드

DOI QR Code

Fatty Acid Composition of Endangered Land Snail Koreanohadra koreana (Mollusca: Gastropoda) of South Korea by Season, Region, and Microhabitat

  • Kim, Jin-Young (Research Center for Endangered Species, National Institute of Ecology) ;
  • Park, Jong-Dae (Research Center for Endangered Species, National Institute of Ecology) ;
  • Jang, Kuem Hee (Research Center for Endangered Species, National Institute of Ecology)
  • 투고 : 2023.10.24
  • 심사 : 2023.11.23
  • 발행 : 2023.12.30

초록

참달팽이(Koreanohadra koreana)는 환경부에서 지정한 법정보호종(멸종위기 야생생물 II급)이며, 전라남도 신안군 홍도와 하태도에서만 서식하는 한국고유종이다. 반면, 그 동안 참달팽이 지방산에 대한 연구는 진행된 바 없다. 홍도와 하태도를 대상으로 계절, 미소서식처, 지역 차이에 따른 참달팽이의 지방산 구성 변화를 비교하기 위해 분석에 사용한 표본의 개수는 총 99개였다. 실험결과 총 16가지의 지방산이 검출되었으며, 주로 식물질 먹이에서 유래되는 다중불포화지방산(PUFAs)이 53.6%로 가장 높았다. 반면, 동물성 또는 미생물에서 유래하는 단일불포화지방산(MUFAs)은 31.4%, 포화지방산(SFAs)은 15.0%로 상대적으로 적게 검출되었다. 참달팽이의 총 지방산량 변화는 PUFAs의 변화와 가장 강한 상관관계(R2=0.88, p < 0.0001)를 보였다. 계절별로 PUFAs는 봄 (13.20 mg/g)과 여름 (13.08 mg/g)이 가을 (12.06 mg/g)과 겨울 (12.40 mg/g)에 비해 많은 양이 검출되었다. 미소서식처별 PUFAs는 초지대(12.80 mg/g)에서 석회질 지대(12.48 mg/g) 보다 다소 높게 나타났다. 반면, 지역별로 홍도(12.65 mg/g)와 하태도(12.64 mg/g)는 차이가 거의 없었다. PUFAs는 참달팽이의 먹이원을 기반으로 한 서식지의 질을 추적할 수 있는 하나의 지표로서 활용가치가 높을 것으로 기대된다.

키워드

과제정보

This study was supported by a research grant from the Restoration Center for Endangered Species, National Institute of Ecology, Republic of Korea.

참고문헌

  1. Ackman R.G. 2000. Fatty acids in fish and shellfish. In: "Fatty acids in Foods and their Health Implications". C.K. Chow (Eds.), (pp. 153-172), M. Dekker, Inc, New York and Basel.
  2. Chiba S. 1999. Accelerated evolution of land snails Mandarina in the oceanic Bonin islands: evidence from mitochondrial DNA sequences. Evolution 53(2): 460-471. https://doi.org/10.2307/2640782
  3. Chiba S. and R.H. Cowie. 2016. Evolution and extinction of land snails on oceanic islands. The Annual Review of Ecology, Evolution, and Systematics 47: 123-141. https://doi.org/10.1146/annurev-ecolsys-112414-054331
  4. Copeland A. and T. Hesselberg. 2021. Habitat preferences of the critically endangered greater Bermuda land snail Poecilozonites bermudensis in the wild. Oryx 1-4.
  5. Dame R.F. 1996. Ecology of marine bivalves. An ecosystem approach. 1st ed., Boca Raton, Florida: CRC Press.
  6. Ekin I. 2015. A comparative study on fatty acid content of main organs and lipid classes of land snails Assyriella escheriana and Assyriella guttata distributed in southeastern Anatolia. Italian Journal of Food Science 27(1): 1-7.
  7. Garces R. and M. Manuel. 1993. One-Step Lipid Extraction and Fatty Acid Methyl Esters Preparation from Fresh Plant Tissues. Analytical Biochemistry 211: 139-143. https://doi.org/10.1006/abio.1993.1244
  8. Gayoso A.M..B.A. MacDonald.G.N. Napolitano.R.J. Pollero and R.J. Thompson. 1997. Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca Estuary (BuenosAires, Argentina) and Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25: 739-755. https://doi.org/10.1016/S0305-1978(97)00053-7
  9. Kamermans P. 1994. Similarity in food source and timing of feeding in deposit-and suspension-feeding bivalves. Marine Ecology Progress Series 104: 63-75. https://doi.org/10.3354/meps104063
  10. Karakoltsidis P.A..A. Zotos and S.M. Constantinides. 1995. Composition of commercially important Mediterranean finfish, crustacean, and mollusks. Journal of Food Composition and Analysis 8: 258.
  11. Kim J.Y..Y.J. Kim.A.R. Kim.I.S. Yoo.H. Kim and D. Kong. 2022. Physical Habitat Characteristics of the Endangered Macroinvertebrate Koreoleptoxis nodifila (Martens, 1886) (Mollusca, Gastropoda) in South Korea. Korean Journal of Ecology and Environment 55(2):145-155. (in Korean) https://doi.org/10.11614/KSL.2022.55.2.145
  12. Kis M..O. Zsiros.T. Farkas.H. Wada.F. Nagy and Z. Gombos. 1998. Light-induced expression of fatty acid desaturase genes. Proceedings of the National Academy of Sciences, U.S.A. 95: 4209.
  13. Kunigelis S.C. and A.S.M. Saleuddin. 1986. Reproduction in the freshwater gastropod Helisoma: involvement of prostaglandin in egg production. International journal of invertebrate reproduction 10: 159.
  14. Milke L.M..V.M. Vricelj and C.C. Parrish. 2004. Growth of postlarval sea scallops, Placopecten magellanicus, on microalgal diets, with emphasis on the nutritional role of lipids and fatty acids. Aquaculture 234: 293-317. https://doi.org/10.1016/j.aquaculture.2003.11.006
  15. Outerbridge M.E. and S.C. Sarkis. 2018. Recovery plan for the endemic land snails of Bermuda, Poecilozonites bermudensis and Poecilozonites circumfirmatus. Department of Environment and Natural Resources, Government of Bermuda pp. 26.
  16. Pernet F..V.M. Vricelj and C.C. Parrish. 2005. Effect of varying dietary levels of w-6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. Journal of Experimental Marine Biology and Ecology 327: 115-133. https://doi.org/10.1016/j.jembe.2005.06.008
  17. Pfeiffer L. 1850. Beschreibungen neuer Landschnecken. Zeitschrift fur Malakozoologie. Cassel 7(5): 65-80.
  18. Sauriau P.G. and C.K. Kang. 2000. Stable isotope evidence of benthic microalgae-based growth and secondary production in the suspension feeder Cerastoderma edule (Mollusca, Bivalvia) in the Marennes-Oleron Bay. Hydrobiologia 440: 317-329. https://doi.org/10.1023/A:1004156102278
  19. Shin W.S. and B.G. Kim. 2010. The Origin of Food Sources for Nuttallia olivacea and Nereidae by Fatty Acid Analysis. Journal of the Environmental Sciences 19(9): 1083-1092. (in Korean) https://doi.org/10.5322/JES.2010.19.9.1083
  20. Sinanoglou V.J. and S. Miniadis-Meimaroglou. 1998. Fatty acids of neutral and polar lipids of (edible) Mediterranean cephalopods. Food Research International 31(6-7): 467.
  21. Stanley-Samuelson D.W. 1987. Physiological roles of prostaglandins and other eicosanoids in invertebrates. Biology Bulletin 173: 92.
  22. Wacker A. 2005. Lipids in the food of a terrestrial snail. Invertebrate Reproduction & Development 47(3): 205.