DOI QR코드

DOI QR Code

Development of a pH/dissolved- oxygen Monitoring System Using HPTS and Rudpp

HPTS, Rudpp를 활용한 pH 및 용존산소 모니터링 시스템 연구

  • Dong Hyuk Jeong (High-tech mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Daewoong Jung (High-tech mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH))
  • 정동혁 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 정대웅 (한국생산기술연구원 첨단메카트로닉스연구그룹)
  • Received : 2023.01.30
  • Accepted : 2023.02.16
  • Published : 2023.03.31

Abstract

This study proposes a pH-dissolved-oxygen monitoring system using 8-HydroxyPyrene-1,3,6-trisulfonic acid Trisodium Salt (HPTS) and tris(4,7-diphenyl-1,10-phenanthroline)Ruthenium(II) chloride (Rudpp). Commercial water-quality sensors are electrochemical devices that require frequent calibration and cleaning, are subject to high maintenance costs, and have difficulties conducting measurements in real-time. The proposed pH-dissolved-oxygen monitoring system selects a thin-film sensing layer to measure the change in fluorescence intensity. This change in fluorescence intensity is based on reactions with hydrogen ions in an aqueous solution at a given pH and specific amount of dissolved oxygen. The change in fluorescence intensity is then measured using light-emitting diodes and photodiodes in response to HPTS and Rudpp. This method enables the development of a relatively small, inexpensive, and real-time measureable water-quality measurement system.

Keywords

Acknowledgement

본 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의 지원을 받아 수행된 연구입니다. (2020-DD-UP-0348). 본 논문은 한국생산기술연구원 기본사업 "산업계 탄소중립을 위한 청정수소 생산-저장 및 탄소저감 모니터링 시스템 실용화 기술개발 (Kitech EH-23-0012)"의 지원으로 수행한 연구입니다.

References

  1. I. K Kalavrouziotis, P. H. Koukoulakis, D. Papaioannou, and A. Mehra, "pH and organic matter impact on the indices of soil metal load assessment under wastewater and biosolid reuse", J. Chem. Technol. Biotechnol., Vol. 93, No. 11, pp. 3244-3253, 2018. https://doi.org/10.1002/jctb.5683
  2. G. Boczkaj and A. Fernandes, "Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review", Chem. Eng. J., Vol. 320, pp. 608-633, 2017. https://doi.org/10.1016/j.cej.2017.03.084
  3. Y. W. Kim, T. H. Kim, J. Shin, B. G. Go, M. Lee, J. H. Lee, J. Koo, K. H. Cho, and Y. K. Cha , "Forecasting abrupt depletion of dissolved oxygen in urban streams using discontinuously measured hourly time-series data", Water Resour. Res. Vol. 57, No, 4, p. e2020WR029188, 2021.
  4. I. Santin, M. Barbu, C. Pedret, and R. Vilanova, "Dissolved oxygen control in biological wastewater treatments with non-ideal sensors and actuators", Ind. Eng. Chem. Res., Vol. 58, No. 45, pp. 20639-20654, 2019. https://doi.org/10.1021/acs.iecr.9b02572
  5. T. Tiyasha, T. M. Tung, S. K. Bhagat, M. L. Tan, A. H. Jawad, W. H. M. W. Mohtar, and Z. M. Yaseen, "Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Development of hybrid tree-based artificial intelligence models", Mar. Pollut. Bull., Vol. 170, p. 112639, 2021.
  6. Y. Zhou, W. Huang, and Y. He, "pH-Induced silver nanoprism etching-based multichannel colorimetric sensor array for ultrasensitive discrimination of thiols", Sens. Actuators B: Chem., Vol. 270, pp. 187-191, 2018. https://doi.org/10.1016/j.snb.2018.05.025
  7. H. R. Baker "Substitution of brom-thymol-blue for litmus in routine laboratory work", J. Bacteriol., Vol. 7, No. 2, pp. 301-305, 1922. https://doi.org/10.1128/jb.7.2.301-305.1922
  8. M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, "A review on pH sensitive materials for sensors and detection methods", Microsyst. Technol., Vol. 23, No. 10, pp. 4391- 4404, 2017. https://doi.org/10.1007/s00542-017-3495-5
  9. M. Simic, L. Manjakkal, K. Zaraska, G. M. Stojanovic, and R. Dahiya, "TiO 2-based thick film pH sensor", IEEE Sens. J., Vol. 17, No. 2, pp. 248-255, 2016. https://doi.org/10.1109/JSEN.2016.2628765
  10. F. Steininger, S. E. Zieger, and K. Koren, "Dynamic Sensor Concept Combining Electrochemical pH Manipulation and Optical Sensing of Buffer Capacity", Anal. Chem., Vol. 93, No. 8, pp. 3822-3829, 2021. https://doi.org/10.1021/acs.analchem.0c04326
  11. M. Wittkampf, G.-C. Chemnitius, K. Cammann, M. Rospert, and W. Mokwa, "Silicon thin film sensor for measurement of dissolved oxygen", Sens. Actuators B: Chem., Vol. 43, No. 1-3, pp. 40-44, 1997. https://doi.org/10.1016/S0925-4005(97)00138-X
  12. M. Skolimowski, M. W. Nielsen, J. Emneus, S. Molin, R. Taboryski, C. Sternberg, M. Dufvaa, and O. Geschkea, "Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies", Lab Chip, Vol. 10, No. 16, pp. 2162-2169, 2010. https://doi.org/10.1039/c003558k
  13. N. B. Patil, A. R. Nimbalkar, and M. G. Patil, "ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection", Mater. Sci. Eng.: B, Vol. 227, pp. 53-60, 2018. https://doi.org/10.1016/j.mseb.2017.10.011
  14. A. Srikanth, G. M. T. Basha, and B. Venkateshwarlu, "A Brief Review on Cold Spray Coating Process", Mater. Today: Proc., Vol. 22, pp. 1390-1397, 2020. https://doi.org/10.1016/j.matpr.2020.01.482
  15. R. Nistico, D. Scalarone, and G. Magnacca, "Sol-gel chemistry, templating and spin-coating deposition: A combined approach to control in a simple way the porosity of inorganic thin films/coatings", Microporous Mesoporous Mater., Vol. 248, pp. 18-29, 2017. https://doi.org/10.1016/j.micromeso.2017.04.017
  16. D. H. Kim, K. C. Song, J. S. Chung, and B. S. Lee, "Preparation of Hard Coating Solutions using Colloidal Silica and Glycidoxypropyl Trimethoxysilane by the Sol-Gel Method", Korean Chem. Eng. Res., Vol. 45, No. 5, pp. 442- 447, 2007.
  17. B. R. Yoo and D. E. Jung, "Recent Progress in the Development of Si-Based Materials for Organic-Inorganic Hybrid System", Polym. Sci.Technol., Vol. 20, No. 2, pp. 124-130, 2009.
  18. D. Lleres, S. Swift, and A. I. Lamond, "Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM)", Curr. Pprotoc. Cytom., Vol. 42, No. 1, pp. 10-12, 2007. https://doi.org/10.1002/0471142956.cy1210s42
  19. Lakowicz and R. Joseph, Principles of fluorescence spectroscopy, Springer, Boston, MA, pp. 1-23, 1999.