DOI QR코드

DOI QR Code

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition

텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서

  • Yulim Min (Department of Advanced Device Technology, University of Science and Technology (UST)) ;
  • Yunjeong Kim (Intelligent Components and Sensors Research Section, Electronic, and Telecommunication Research Institute (ETRI)) ;
  • Jeongnam Kim (Department of Advanced Device Technology, University of Science and Technology (UST)) ;
  • Saerom Seo (Intelligent Components and Sensors Research Section, Electronic, and Telecommunication Research Institute (ETRI)) ;
  • Hye Jin Kim (Department of Advanced Device Technology, University of Science and Technology (UST))
  • 민유림 (과학기술연합대학교대학원 ICT 차세대 소자 공학과) ;
  • 김윤정 (한국전자통신연구원 지능형부품센서연구실) ;
  • 김정남 (과학기술연합대학교대학원 ICT 차세대 소자 공학과) ;
  • 서새롬 (한국전자통신연구원 지능형부품센서연구실) ;
  • 김혜진 (과학기술연합대학교대학원 ICT 차세대 소자 공학과)
  • Received : 2023.01.31
  • Accepted : 2023.02.27
  • Published : 2023.03.31

Abstract

Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

Keywords

Acknowledgement

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 산업기술평가관리원의 지원(No. RS-2022-00154781), 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(No. 2020-0-00003), 2021년도 UST Young Scientist 양성 사업(No. 2021YS26)의 지원을 받아 수행된 연구임

References

  1. G. Zhao, X. Zhang, X. Cui, S. Wang, Z. Liu, L. Deng, A. Qi, X. Qiao, L. Li, C. Pan, Y. Zhang, and L. Li, "Piezoelectric polyacrylonitrile nanofiber film-based dual-function self-powered flexible sensor", ACS Appl. Mater. Interfaces, Vol. 10, No. 18, pp. 15855-15863, 2018. https://doi.org/10.1021/acsami.8b02564
  2. S. Gao, Y. Dai, and A. Nathan, "Tactile and Vision Perception for Intelligent Humanoids", Adv. Intell. Syst., Vol. 4, No. 2, p. 2100074, 2022.
  3. H. Oh, G.-C. Yi, M. Yip, and S. A. Dayeh, "Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics", Sci. Adv., Vol. 6, No. 46, p. eabd7795, 2020.
  4. J. Ham, T. Huh, J. Kim, J. Kim, S. Park, Mark R. Cutkosky, and Zhenan Bao, "Porous Dielectric Elastomer Based Flexible Multiaxial Tactile Sensor for Dexterous Robotic or Prosthetic Hands", Adv. Mater. Technol., p. 2200903, 2022.
  5. S. Pyo, J. Choi, and J. Kim, "Flexible, transparent, sensitive, and crosstalk-free capacitive tactile sensor array based on graphene electrodes and air dielectric", Adv. Electron. Mater., Vol. 4, No. 1, p. 1700427, 2018.
  6. Y. Jung, J. Choi, W. Lee, J. S. Ko, I. Park, and H. Cho, "Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres", Adv. Funct. Mater., p. 2201147, 2022.
  7. M. Ha, S. Lim, J. Park, D.-S. Um, Y. Lee, and H. Ko, "Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins", Adv. Funct. Mater., Vol. 25, No. 19, pp. 2841-2849, 2015. https://doi.org/10.1002/adfm.201500453
  8. H. Yao, W. Yang, W. Cheng, Y. J. Tan, H. H See, H. P. A. Ali, B. Z. H. Lim, Z Liu, and B. C. K. Tee "Near-hysteresisfree soft tactile electronic skins for wearables and reliable machine learning", Proc. Natl. Acad. Sci., Vol. 117, No. 41, pp. 25352-25359, 2020. https://doi.org/10.1073/pnas.2010989117
  9. W. Lin, B. Wang, G. Peng, Y. Shan, H. Hu, and Z. Yang, "Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+ column electrodes for spatiotemporally distinguishing diverse stimuli", Adv. Sci., Vol. 8, No. 3, p. 2002817, 2021.
  10. C. Jiang, Z. Zhang, J. Pan, Y. Wang, L. Zhang, and L. Tong, "Finger-Skin-Inspired Flexible Optical Sensor for Force Sensing and Slip Detection in Robotic Grasping", Adv. Mater. Technol., Vol. 6, No. 10, p. 2100285, 2021.
  11. J. Khaliq, D. B. Deutz, J. A. C. Frescas, J. A. C. Frescas, P. Vollenberg, T. Hoeks, S. V. D Zwaag, and P. Groen, "Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites", Ceram. Int., Vol. 43, No. 2, pp. 2774-2779, 2017. https://doi.org/10.1016/j.ceramint.2016.11.108
  12. H. Jia, H. Li, B. Lin, Y. Hu. L. Peng, D. Xu, and X. Cheng, "Fine scale 2-2 connectivity PZT/epoxy piezoelectric fiber composite for high frequency ultrasonic application", Sens. Actuators A Phys., Vol. 324, p. 112672, 2021.
  13. N. Chamankar, R. Khajavi, A. A. Yousefi, A. Rashidi, and F. Golestanifard, "A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications", Ceram. Int., Vol. 46, No. 12, pp. 19669-19681, 2020. https://doi.org/10.1016/j.ceramint.2020.03.210
  14. X. Hou, S. Zhang, J. Yu, M. Cui, J. He, L. Li, X. Wang, and X. Chou, "Flexible Piezoelectric Nanofibers/Polydimethylsiloxane-Based Pressure Sensor for Self-Powered Human Motion Monitoring", Energy Technol., Vol. 8, No. 3, p. 1901242, 2020.
  15. Y. Liu, L. Zhao, L. Wang, H. Zheng, D. Li, R. Avila, K. W. C. Lai, Z. Wang, Z. Xie, Y. Zi, and X. Yu, "Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing", Adv. Mater. Technol., Vol. 4, No. 12, p. 1900744, 2019.
  16. A. Yildirim, R. Rahimi, S. S. Es-haghi, A. Vadlamani, F. Peng, M. Oscai, and M. Cakmak, "Roll-to-Roll (R2R) Production of Ultrasensitive, Flexible, and Transparent Pressure Sensors Based on Vertically Aligned Lead Zirconate Titanate and Graphene Nanoplatelets", Adv. Mater. Technol., Vol. 4, No. 3, p. 1800425, 2019.
  17. C. Zhou, J. Zhang, W. Su, and Y. Cao, "Large thicknessmode electromechanical coupling and good temperature stability of 1-3 PZT/epoxy composites", J. Mater. Sci. Mater. Electron., Vol. 32, No. 4, pp. 4705-4712, 2021. https://doi.org/10.1007/s10854-020-05208-3