DOI QR코드

DOI QR Code

GENERALIZED HYPERBOLIC GEOMETRIC FLOW

  • Shahroud Azami (Department of Pure Mathematics Faculty of Science Imam Khomeini International University) ;
  • Ghodratallah Fasihi Ramandi (Department of Pure Mathematics Faculty of Science Imam Khomeini International University) ;
  • Vahid Pirhadi (Department of Pure Mathematics Faculty of mathematics University of Kashan)
  • Received : 2022.04.24
  • Accepted : 2022.07.28
  • Published : 2023.04.30

Abstract

In the present paper, we consider a kind of generalized hyperbolic geometric flow which has a gradient form. Firstly, we establish the existence and uniqueness for the solution of this flow on an n-dimensional closed Riemannian manifold. Then, we give the evolution of some geometric structures of the manifold along this flow.

Keywords

References

  1. S. Azami, Harmonic-hyperbolic geometric flow, Electron. J. Differential Equations 2017 (2017), Paper No. 165, 9 pp. 
  2. S. Azami, Ricci-Bourguignon flow coupled with harmonic map flow, Internat. J. Math. 30 (2019), no. 10, 1950049, 17 pp. https://doi.org/10.1142/S0129167X19500496 
  3. S. Azami, Hyperbolic Ricci-Bourguignon flow, Comput. Methods Differ. Equ. 9 (2021), no. 2, 399-409. https://doi.org/10.22034/cmde.2020.34205.1566 
  4. J.-P. Bourguignon, Ricci curvature and Einstein metrics, in Global differential geometry and global analysis (Berlin, 1979), 42-63, Lecture Notes in Math., 838, Springer, Berlin, 1981. 
  5. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370. https://doi.org/10.2140/pjm.2017.287.337 
  6. B. Chow and D. Knopf, The Ricci flow: An Introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/surv/110 
  7. W.-R. Dai, D.-X. Kong, and K. Liu, Hyperbolic geometric flow (I) : short-time existence and nonlinear stability, Pure Appl. Math. Q. 6 (2010), no. 2, Special Issue: In honor of Michael Atiyah and Isadore Singer, 331-359. https://doi.org/10.4310/PAMQ.2010.v6.n2.a3 
  8. D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), no. 1, 157-162. http://projecteuclid.org/euclid.jdg/1214509286  https://doi.org/10.4310/jdg/1214509286
  9. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922  https://doi.org/10.4310/jdg/1214436922
  10. D.-X. Kong and K. Liu, Wave character of metrics and hyperbolic geometric flow, J. Math. Phys. 48 (2007), no. 10, 103508, 14 pp. https://doi.org/10.1063/1.2795839 
  11. B. List, Evolution of an extended Ricci flow system, Comm. Anal. Geom. 16 (2008), no. 5, 1007-1048. https://doi.org/10.4310/CAG.2008.v16.n5.a5 
  12. R. Muller, Ricci flow coupled with harmonic map flow, Ann. Sci. Ec. Norm. Super. (4) 45 (2012), no. 1, 101-142. https://doi.org/10.24033/asens.2161 
  13. J.-Y. Wu, A general Ricci flow system, J. Korean Math. Soc. 55 (2018), no. 2, 253-292. https://doi.org/10.4134/JKMS.j170037