Acknowledgement
The author sincerely thanks the anonymous reviewer for the careful reading the first draft of paper.
References
- Z. Abbasbeygi, A. Bodaghi, and A. Gharibkhajeh, On an equation characterizing multi-quartic mappings and its stability, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 991-1002.
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- A. Bahyrycz, K. Cieplinski, and J. Olko, On Hyers-Ulam stability of two functional equations in non-Archimedean spaces, J. Fixed Point Theory Appl. 18 (2016), no. 2, 433-444. https://doi.org/10.1007/s11784-016-0288-x
- A. Bodaghi, Functional inequalities for generalized multi-quadratic mappings, J. Inequal. Appl. 2021 (2021), Paper No. 145, 13 pp. https://doi.org/10.1186/s13660-021-02682-z
- A. Bodaghi, Generalized multiquartic mappings, stability, and nonstability, J. Math. 2022 (2022), Art. ID 2784111, 9 pp. https://doi.org/10.1155/2022/2784111
- A. Bodaghi, C. Park, and O. T. Mewomo, Multiquartic functional equations, Adv. Difference Equ. 2019 (2019), Paper No. 312, 10 pp. https://doi.org/10.1186/s13662-019-2255-5
- A. Bodaghi, S. Salimi, and G. Abbasi, Approximation for multi-quadratic mappings in non-Archimedean spaces, An. Univ. Craiova Ser. Mat. Inform. 48 (2021), no. 1, 88-97. https://doi.org/10.52846/ami.v48i1.1364
- A. Bodaghi and B. Shojaee, On an equation characterizing multi-cubic mappings and its stability and hyperstability, Fixed Point Theory 22 (2021), no. 1, 83-92. https://doi.org/10.24193/fpt-ro.2021.1.06
- J. Brzd,ek and K. Cieplinski, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 (2011), no. 18, 6861-6867. https://doi.org/10.1016/j.na.2011.06.050
- K. Cieplinski, Generalized stability of multi-additive mappings, Appl. Math. Lett. 23 (2010), no. 10, 1291-1294. https://doi.org/10.1016/j.aml.2010.06.015
- K. Cieplinski, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl. 62 (2011), no. 9, 3418-3426. https://doi.org/10.1016/j.camwa.2011.08.057
- N. Ebrahimi Hoseinzadeh, A. Bodaghi, and M. R. Mardanbeigi, Almost multi-cubic mappings and a fixed point application, Sahand Commun. Math. Anal. 17 (2020), no. 3, 131-143.
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, second edition, Birkhauser Verlag, Basel, 2009. https://doi.org/10.1007/978-3-7643-8749-5
- S. H. Lee, S. M. Im, and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005), no. 2, 387-394. https://doi.org/10.1016/j.jmaa.2004.12.062
- C. Park, A. Bodaghi, and T.-Z. Xu, On an equation characterizing multi-Jensen-quartic mappings and its stability, J. Math. Inequal. 15 (2021), no. 1, 333-347. https://doi.org/10.7153/jmi-2021-15-25
- C.-G. Park, Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2501-2504. https://doi.org/10.1090/S0002-9939-02-06886-7
- J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) (1999), no. 2, 243-252.
- T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.2307/2042795
- K. Ravi and S. Sabarinathan, Generalized Hyers-Ulam stability of a sextic functional equation in paranormed spaces, Int. J. Math. Trends Tech. 9 (2014), 60-69. https://doi.org/10.14445/22315381/IJETT-V9P212
- S. Rolewicz, Metric linear spaces, second edition, Mathematics and its Applications (East European Series), 20, D. Reidel Publishing Co., Dordrecht, 1985.
- P. Semrl, The stability of approximately additive functions, in Stability of mappings of Hyers-Ulam type, 135-140, Hadronic Press Collect. Orig. Artic, Hadronic Press, Palm Harbor, FL, 1994.
- S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.
- T. Z. Xu, J. M. Rassias, M. J. Rassias, and W. X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl. 2010 (2010), Art. ID 423231, 23 pp. https://doi.org/10.1155/2010/423231
- T. Z. Xu, C. Wang, and T. M. Rassias, On the stability of multi-additive mappings in non-Archimedean normed spaces, J. Comput. Anal. Appl. 18 (2015), no. 6, 1102-1110.
- X. Zhao, X. Yang, and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal. 2013 (2013), Art. ID 415053, 8 pp. https://doi.org/10.1155/2013/415053