DOI QR코드

DOI QR Code

GENERAL SYSTEM OF MULTI-SEXTIC MAPPINGS AND STABILITY RESULTS

  • Abasalt Bodaghi (Department of Mathematics West Tehran Branch Islamic Azad University)
  • Received : 2022.06.06
  • Accepted : 2022.09.23
  • Published : 2023.04.30

Abstract

In this study, we characterize the structure of the multivariable mappings which are sextic in each component. Indeed, we unify the general system of multi-sextic functional equations defining a multi-sextic mapping to a single equation. We also establish the Hyers-Ulam and Găvruţa stability of multi-sextic mappings by a fixed point theorem in non-Archimedean normed spaces. Moreover, we generalize some known stability results in the setting of quasi-𝛽-normed spaces. Using a characterization result, we indicate an example for the case that a multi-sextic mapping is non-stable.

Keywords

Acknowledgement

The author sincerely thanks the anonymous reviewer for the careful reading the first draft of paper.

References

  1. Z. Abbasbeygi, A. Bodaghi, and A. Gharibkhajeh, On an equation characterizing multi-quartic mappings and its stability, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 991-1002. 
  2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064 
  3. A. Bahyrycz, K. Cieplinski, and J. Olko, On Hyers-Ulam stability of two functional equations in non-Archimedean spaces, J. Fixed Point Theory Appl. 18 (2016), no. 2, 433-444. https://doi.org/10.1007/s11784-016-0288-x 
  4. A. Bodaghi, Functional inequalities for generalized multi-quadratic mappings, J. Inequal. Appl. 2021 (2021), Paper No. 145, 13 pp. https://doi.org/10.1186/s13660-021-02682-z 
  5. A. Bodaghi, Generalized multiquartic mappings, stability, and nonstability, J. Math. 2022 (2022), Art. ID 2784111, 9 pp. https://doi.org/10.1155/2022/2784111 
  6. A. Bodaghi, C. Park, and O. T. Mewomo, Multiquartic functional equations, Adv. Difference Equ. 2019 (2019), Paper No. 312, 10 pp. https://doi.org/10.1186/s13662-019-2255-5 
  7. A. Bodaghi, S. Salimi, and G. Abbasi, Approximation for multi-quadratic mappings in non-Archimedean spaces, An. Univ. Craiova Ser. Mat. Inform. 48 (2021), no. 1, 88-97.  https://doi.org/10.52846/ami.v48i1.1364
  8. A. Bodaghi and B. Shojaee, On an equation characterizing multi-cubic mappings and its stability and hyperstability, Fixed Point Theory 22 (2021), no. 1, 83-92. https://doi.org/10.24193/fpt-ro.2021.1.06 
  9. J. Brzd,ek and K. Cieplinski, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 (2011), no. 18, 6861-6867. https://doi.org/10.1016/j.na.2011.06.050 
  10. K. Cieplinski, Generalized stability of multi-additive mappings, Appl. Math. Lett. 23 (2010), no. 10, 1291-1294. https://doi.org/10.1016/j.aml.2010.06.015 
  11. K. Cieplinski, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl. 62 (2011), no. 9, 3418-3426. https://doi.org/10.1016/j.camwa.2011.08.057 
  12. N. Ebrahimi Hoseinzadeh, A. Bodaghi, and M. R. Mardanbeigi, Almost multi-cubic mappings and a fixed point application, Sahand Commun. Math. Anal. 17 (2020), no. 3, 131-143. 
  13. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X 
  14. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222 
  15. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, second edition, Birkhauser Verlag, Basel, 2009. https://doi.org/10.1007/978-3-7643-8749-5 
  16. S. H. Lee, S. M. Im, and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005), no. 2, 387-394. https://doi.org/10.1016/j.jmaa.2004.12.062 
  17. C. Park, A. Bodaghi, and T.-Z. Xu, On an equation characterizing multi-Jensen-quartic mappings and its stability, J. Math. Inequal. 15 (2021), no. 1, 333-347. https://doi.org/10.7153/jmi-2021-15-25 
  18. C.-G. Park, Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2501-2504. https://doi.org/10.1090/S0002-9939-02-06886-7 
  19. J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) (1999), no. 2, 243-252. 
  20. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.2307/2042795 
  21. K. Ravi and S. Sabarinathan, Generalized Hyers-Ulam stability of a sextic functional equation in paranormed spaces, Int. J. Math. Trends Tech. 9 (2014), 60-69.  https://doi.org/10.14445/22315381/IJETT-V9P212
  22. S. Rolewicz, Metric linear spaces, second edition, Mathematics and its Applications (East European Series), 20, D. Reidel Publishing Co., Dordrecht, 1985. 
  23. P. Semrl, The stability of approximately additive functions, in Stability of mappings of Hyers-Ulam type, 135-140, Hadronic Press Collect. Orig. Artic, Hadronic Press, Palm Harbor, FL, 1994. 
  24. S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964. 
  25. T. Z. Xu, J. M. Rassias, M. J. Rassias, and W. X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl. 2010 (2010), Art. ID 423231, 23 pp. https://doi.org/10.1155/2010/423231 
  26. T. Z. Xu, C. Wang, and T. M. Rassias, On the stability of multi-additive mappings in non-Archimedean normed spaces, J. Comput. Anal. Appl. 18 (2015), no. 6, 1102-1110. 
  27. X. Zhao, X. Yang, and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal. 2013 (2013), Art. ID 415053, 8 pp. https://doi.org/10.1155/2013/415053