DOI QR코드

DOI QR Code

THE MEASURABILITY OF HEWITT-STROMBERG MEASURES AND DIMENSIONS

  • Zied Douzi (Analysis, Probability and Fractals Laboratory: LR18ES17 Faculty of Sciences of Monastir Department of Mathematics) ;
  • Bilel Selmi (Analysis, Probability and Fractals Laboratory: LR18ES17 Faculty of Sciences of Monastir Department of Mathematics) ;
  • Haythem Zyoudi (Analysis, Probability and Fractals Laboratory: LR18ES17 Faculty of Sciences of Monastir Department of Mathematics)
  • Received : 2022.05.28
  • Accepted : 2022.09.16
  • Published : 2023.04.30

Abstract

The aim of this paper is to study the descriptive set-theoretic complexity of the Hewitt-Stromberg measure and dimension maps.

Keywords

Acknowledgement

The second author would like to thank Professors Lars Olsen and Jinjun Li for useful discussions while writing this manuscript and for pointing out that the upper (fractal/multifractal) Hewitt-Stromberg function can be is not necessarily a metric outer measure. He is also greatly indebted to Professor Pertti Mattila for giving elaborate comments so that the presentation can be greatly improved. This work was supported by Analysis, Probability & Fractals Laboratory (No: LR18ES17).

References

  1. N. Attia and B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean Math. Soc. 34 (2019), no. 1, 213-230. https://doi.org/10.4134/CKMS.c180030 
  2. N. Attia and B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, J. Geom. Anal. 31 (2021), no. 1, 825-862. https://doi.org/10.1007/s12220-019-00302-3 
  3. N. Attia and B. Selmi, On the mutual singularity of Hewitt-Stromberg measures, Anal. Math. 47 (2021), no. 2, 273-283. https://doi.org/10.1007/s10476-021-0079-5 
  4. Z. Douzi and B. Selmi, Projection theorems for Hewitt-Stromberg and modified intermediate dimensions, Results Math. 77 (2022), no. 4, Paper No. 158, 14 pp. https://doi.org/10.1007/s00025-022-01685-6 
  5. Z. Douzi and B. Selmi, On the mutual singularity of Hewitt-Stromberg measures for which the multifractal functions do not necessarily coincide, Ricerche di Matematica, (to appear). 
  6. Z. Douzi, B. Selmi, and Z. Yuan, Some regular properties of the Hewitt-Stromberg measures with respect to doubling gauges, Analysis Mathematica, (Accepted). 
  7. G. A. Edgar, Integral, Probability, and Fractal Measures, Springer-Verlag, New York, 1998. https://doi.org/10.1007/978-1-4757-2958-0 
  8. G. A. Edgar, Errata for "Integral, probability, and fractal measures", 2022. https://people.math.osu.edu/edgar.2/books/ipfm.html 
  9. K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990. 
  10. K. J. Falconer and R. D. Mauldin, Fubini-type theorems for general measure constructions, Mathematika 47 (2000), no. 1-2, 251-265 (2002). https://doi.org/10.1112/S0025579300015862 
  11. H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr. 124 (1985), 45-55. https://doi.org/10.1002/mana.19851240104 
  12. H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr. 134 (1987), 295-307. https://doi.org/10.1002/mana.19871340121 
  13. E. Hewitt and K. Stromberg, Real and Abstract Analysis. A modern Treatment of the Theory of Functions of a Real Variable, Springer-Verlag, New York, 1965. 
  14. H. Joyce and D. Preiss, On the existence of subsets of finite positive packing measure, Mathematika 42 (1995), no. 1, 15-24. https://doi.org/10.1112/S002557930001130X 
  15. S. Jurina, N. MacGregor, A. Mitchell, L. Olsen, and A. Stylianou, On the Hausdorff and packing measures of typical compact metric spaces, Aequationes Math. 92 (2018), no. 4, 709-735. https://doi.org/10.1007/s00010-018-0548-5 
  16. A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-4190-4 
  17. A. S. Kechris and A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, 128, Cambridge University Press, Cambridge, 1987. https://doi.org/10.1017/CBO9780511758850 
  18. J. Li, Large equivalence of dh-measures, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 17 (2009), no. 2, 95-100. 
  19. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511623813 
  20. P. Mattila and R. D. Mauldin, Measure and dimension functions: measurability and densities, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 1, 81-100. https://doi.org/10.1017/S0305004196001089 
  21. L. Olsen, Measurability of multifractal measure functions and multifractal dimension functions, Hiroshima Math. J. 29 (1999), no. 3, 435-458. http://projecteuclid.org/euclid.hmj/1206124851  https://doi.org/10.32917/hmj/1206124851
  22. L. Olsen, On average Hewitt-Stromberg measures of typical compact metric spaces, Math. Z. 293 (2019), no. 3-4, 1201-1225. https://doi.org/10.1007/s00209-019-02239-3 
  23. Y. B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. https://doi.org/10.7208/chicago/9780226662237.001.0001 
  24. C. A. Rogers, Hausdorff Measures, Cambridge University Press, London, 1970. 
  25. J. Rouyer, Generic properties of compact metric spaces, Topology Appl. 158 (2011), no. 16, 2140-2147. https://doi.org/10.1016/j.topol.2011.07.003 
  26. B. Selmi, A note on the multifractal Hewitt-Stromberg measures in a probability space, Korean J. Math. 28 (2020), no. 2, 323-341. https://doi.org/10.11568/kjm.2020.28.2.323 
  27. B. Selmi, A review on multifractal analysis of Hewitt-Stromberg measures, J. Geom. Anal. 32 (2022), no. 1, Paper No. 12, 44 pp. https://doi.org/10.1007/s12220-021-00753-7 
  28. B. Selmi, Slices of Hewitt-Stromberg measures and co-dimensions formula, Analysis (Berlin) 42 (2022), no. 1, 23-39. https://doi.org/10.1515/anly-2021-1005 
  29. B. Selmi, Average Hewitt-Stromberg and box dimensions of typical compact metric spaces, Quaestiones Mathematicae, (to appear). 
  30. B. Selmi, On the projections of the multifractal Hewitt-Stromberg dimensions, Filomat 37 (2023), no. 15, 4869-4880. 
  31. O. Zindulka, Packing measures and dimensions on Cartesian products, Publ. Mat. 57 (2013), no. 2, 393-420. https://doi.org/10.5565/PUBLMAT_57213_06