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THE MEASURABILITY OF HEWITT-STROMBERG

MEASURES AND DIMENSIONS

Zied Douzi, Bilel Selmi, and Haythem Zyoudi

Abstract. The aim of this paper is to study the descriptive set-theoretic

complexity of the Hewitt-Stromberg measure and dimension maps.

1. Introduction and statement of the results

The main motivation for this paper is the articles by Falconer and Mauldin
in [10], Mattila and Mauldin in [20], and Olsen in [21], where the following
question is considered: what can be said about the study of the measurability
and the Baire’s classes of multifractal and fractal measures and dimensions?
The aim of this work is to study the smoothness of the Hewitt-Stromberg
measures and dimensions.

The notion of dimension is fundamental in the study of fractals. Various
definitions of dimension have been proposed, such as the Hausdorff dimension,
the packing dimension and the modified lower and upper box dimensions etc.
Unlike the Hausdorff and packing dimensions, the modified lower and upper box
dimensions are not defined in terms of measures. Hewitt-Stromberg measures
were introduced by Hewitt and Stromberg in [13, Exercise (10.51)]. Since then,
they have been investigated by several authors, highlighting their importance
in the study of local properties of fractals and products of fractals. One can
cite, for example [1-6, 11, 12, 15, 18, 22, 26-31]. In particular, Edgar’s textbook
[7] provides an excellent and systematic introduction to these measures, which
also appears explicitly, for example, in Pesin’s monograph [23] and implicitly
in Mattila’s text [19].

A function g : (0,+∞) → (0,+∞) is called a dimension function if g is
increasing, right continuous and limr→0 g(r) = 0. The Hausdorff measure as-
sociated with a dimension function g is defined as follows. Let X be a metric
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space and E ⊆ X. For ε > 0, we write

H g
ε (E) = inf

{∑
i

g
(
diam(Ei)

) ∣∣∣ E ⊆
⋃
i

Ei, diam(Ei) < ε

}
.

This allows to define the g-dimensional Hausdorff measure H g(E) of E by

H g(E) = sup
ε>0

H g
ε (E).

The packing measure with a dimension function g is defined, for ε > 0, as
follows:

P
g

ε(E) = sup

{∑
i

g
(
2ri

)}
,

where the supremum is taken over all closed balls
(
B(xi, ri)

)
i
such that ri ≤ ε

and with xi ∈ E and B(xi, ri) ∩ B(xj , rj) = ∅ for i ̸= j. The g-dimensional

packing pre-measure P
g
(E) of E is now defined by

P
g
(E) = inf

ε>0
P

g

ε(E).

This makes us able to define the g-dimensional packing measure Pg(E) of E
as

Pg(E) = inf

{∑
i

P
g
(Ei)

∣∣∣ E ⊆
⋃
i

Ei

}
.

While Hausdorff and packing measures are defined using coverings and packings
by families of sets (balls) with diameters less than a given positive number δ,
say, the Hewitt-Stromberg measures are defined using packings and coverings
of balls with the same diameter δ. Let E be a (totally) bounded subset of X.
The Hewitt-Stromberg pre-measures are defined as follows:

U
g

δ(E) = inf
0<r≤δ

Mr(E)g(2r) and U
g
(E) = lim

δ→0
U

g

δ(E)

and

V
g

δ(E) = sup
0<r≤δ

Nr(E)g(2r) and V
g
(E) = lim

δ→0
V

g

δ(E),

where the packing number Mr(E) of E is given by

Mr(E) = sup

{
♯{I}

∣∣∣ (B(xi, r)
)
i∈I

is a family of closed balls with xi ∈ E

and B(xi, r) ∩B(xj , r) = ∅ for i ̸= j

}
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and the covering number Nr(E) of E is given by

Nr(E) = inf

{
♯{I}

∣∣∣ (B(xi, r)
)
i∈I

is a family of closed balls with

xi ∈ X and E ⊆
⋃
i

B(xi, r)

}
.

Now, we define the lower and upper g-dimensional Hewitt-Stromberg mea-
sures, which we denote respectively by U g(E) and V g(E), as follows:

U g(E) = inf

{∑
i

U
g
(Ei)

∣∣∣ E ⊆
⋃
i

Ei, Ei is bounded in X

}
and

V g(E) = inf

{∑
i

V
g
(Ei)

∣∣∣ E ⊆
⋃
i

Ei, Ei is bounded in X

}
.

It is easy to see that Nr and Mr are closely related, more precisely, we have

M2r(E) ≤ Nr(E) ≤Mr(E).(1.1)

Because of this relation, we will use Mr most of the time.
We recall in the following the basic inequalities satisfied by the Hewitt-

Stromberg, the Hausdorff and the packing measures. It follows from (1.1) that
there exists a constant c > 0 such that for all E

U
g
(E) ≤ c V

g
(E) ≤ c P

g
(E)

and

H g(E) ≤ U g(E) ≤ c V g(E) ≤ c Pg(E)

provided g satisfies the doubling condition.
Note that the definition of the Hewitt-Stromberg measures is differing slight-

ly from those introduced in [7,15]. Our main reason for modifying the definition
is to allow us to prove results without having to assume some extra conditions.
The reader is referred to Edgar’s book [7, p. 32] (see also [15, 22, Proposition
2.1]) for a systematic introduction to the Hewitt-Stromberg, Hausdorff and
packing measures.

As above, we note that if t > 0 and gt denotes the dimension function defined
by gt(r) = rt, then we will follow the traditional convention and write

H gt(E) = H t(E), Pgt(E) = Pt(E),

U
gt
(E) = U

t
(E), V

gt
(E) = V

t
(E),

and

U gt(E) = U t(E), V gt(E) = V t(E).
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The lower and upper Hewitt-Stromberg dimension dimMB(E) and dimMB(E)
are defined by

dimMB(E) = inf
{
t ≥ 0

∣∣∣ U t(E) = 0
}
= sup

{
t ≥ 0

∣∣∣ U t(E) = +∞
}

and

dimMB(E) = inf
{
t ≥ 0

∣∣∣ V t(E) = 0
}
= sup

{
t ≥ 0

∣∣∣ V t(E) = +∞
}
.

The lower and upper box dimensions, denoted by dimB(E) and dimB(E), re-
spectively, are now defined by

dimB(E) = lim inf
r→0

logNr(E)

− log r
= lim inf

r→0

logMr(E)

− log r

and

dimB(E) = lim sup
r→0

logNr(E)

− log r
= lim sup

r→0

logMr(E)

− log r
.

There are similar formulas for the lower and upper box dimensions as follows:

(1.2) dimB(E) = inf
{
t ≥ 0

∣∣∣ U t
(E) = 0

}
= sup

{
t ≥ 0

∣∣∣ U t
(E) = +∞

}
and

(1.3) dimB(E) = inf
{
t ≥ 0

∣∣∣ V t
(E) = 0

}
= sup

{
t ≥ 0

∣∣∣ V t
(E) = +∞

}
.

These dimensions satisfy the following inequalities:

dimH(E) ≤ dimMB(E) ≤ dimMB(E) ≤ dimP (E),

dimH(E) ≤ dimP (E) ≤ dimB(E) and dimH(E) ≤ dimB(E) ≤ dimB(E).

In particular, we have (see [9])

(1.4) dimMB(E) = inf

{
sup
i

dimB(Ei)
∣∣∣ E ⊆

⋃
i

Ei, Ei is bounded in X

}
and

(1.5) dimMB(E) = inf

{
sup
i

dimB(Ei)
∣∣∣ E ⊆

⋃
i

Ei, Ei is bounded in X

}
.

The reader is referred to [7, 9] for an excellent discussion of the Hausdorff di-
mension, the packing dimension, lower and upper Hewitt-Stromberg dimension
and the box dimensions.

Remark 1.1. It follows from the standard Method I construction [24, Theorem
4] that U g and V g are outer measures and thus they are measures on the
Carathéodory-measurable algebra. The function U g is a metric outer measure
and thus it is a measure on the Borel algebra. Unfortunately, the function V g

is not a metric outer measure (see [8]) which implies in particular that V g is
not a Borel measure (see Theorem 1.7 in [19]).
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In this work, we study the descriptive set theoretic complexity of the follow-
ing maps:

K (X) −→ [0, +∞] : K 7→ U g(K),

K (X) −→ [0, +∞] : K 7→ V g(K),

K (X) −→ [0, +∞] : K 7→ dimMB(K),

K (X) −→ [0, +∞] : K 7→ dimMB(K),

K (X) −→ [0, +∞] : K 7→ dimB(K),

K (X) −→ [0, +∞] : K 7→ dimB(K),

here K (X) denotes the family of non-empty compact subsets of X equipped
with the Hausdorff metric. More precisely, we will prove that the upper and
lower box dimension maps are of Baire class 2 and not of Baire class 1 (note
that this result is proved by Mattila and Mauldin [20], the purpose of this pa-
per is to give another proof by using the smoothness of the Hewitt-Stromberg
pre-measures). We show also that the upper and lower Hewitt-Stromberg di-
mension maps are measurable with respect to the σ-algebra generated by the
analytic sets of K (X) and, in general, they are not Borel measurable. Fi-
nally, we prove that the Hewitt-Stromberg measure maps (if we assume that
the “subset of positive and finite measure” property is satisfied) are measur-
able with respect to the σ-algebra generated by the analytic sets of K (X) and
they need not be Borel measurable. As an application, by composing suitable
functions, we can use the results to deduce the measurability of various func-
tions, i.e., we apply the measurability results to study the measurability of the
Hewitt-Stromberg measures and dimensions of sections. Remark that some of
these results can be viewed as the analogues of the descriptive set-theoretic
complexity of Hausdorff and packing measures and dimensions by Olsen [21]
when X = Rn, and Mattila and Mauldin [20] in the case where X is a Polish
space.

Throughout this paper (X, d) will be a Polish space, that is, a complete
separable metric space. We equip the space K (X) of non-empty compact
subsets of X with the Hausdorff distance ρ denoted by

ρ(K,L) = max

{
sup
x∈K

d(x, L), sup
y∈L

d(y,K)

}
.

Then (K (X), ρ) is a complete separable metric space. For A ⊂ X, the closure
of A will be Ā and the interior of A will be A◦. The σ-algebra generated by
analytic sets will be denoted by B(A ). In a product space, π stands for the
projection onto the first factor.

The first result gives that the upper and lower box dimension maps are of
Baire class 2 and not of Baire class 1. Let us mention that this result has
been proved by Mattila and Mauldin [20], the main purpose in the following
is to give another proof by using the smoothness (Borel measurability) of the
Hewitt-Stromberg pre-measures.
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Theorem 1.1. The functions dimB , dimB : K (X) −→ [0,+∞] are of Baire
class 2 and not of Baire class 1.

By using Theorem 1.1 and the characterizations (1.4) and (1.5) of the
Hewitt-Stromberg dimensions, we show that these dimension functions are
B(A )-measurable, i.e., are measurable with respect to the σ-algebra gener-
ated by the analytic sets of K (X).

Theorem 1.2. The maps dimMB , dimMB : K (X) −→ [0,+∞] are B(A )-
measurable, where B(A ) denotes the σ-algebra generated by the family A of
analytic subsets of K (X).

In the following, we present one of our main results which shows that the
Hewitt-Stromberg measure functions are measurable with respect to the σ-
algebra generated by the analytic sets. In order to obtain optimal results, we
occasionally will have to use that the Hewitt-Stromberg measures satisfy the
“subset of positive and finite measure” property as which is given in [14]. We
say that the measure µ has the “subset of positive and finite measure” property,
if for any compact set E of X with µ(E) > 0 there exists a compact set F ⊆ E
such that 0 < µ(F ) <∞.

Theorem 1.3. If the Hewitt-Stromberg measures have the “subset of positive
and finite measure” property, then the functions U g : K (X) −→ [0,+∞] and
V g : K (X) −→ [0,+∞] are measurable with respect to the σ-algebra generated
by the analytic sets of K (X).

As an application, we apply the measurability results established in The-
orems 1.2 and 1.3 to study the measurability of sections. Let Y be a Polish
space. If E ⊂ Y ×X, and y ∈ Y , then we denote Ey = {x ∈ X | (y, x) ∈ E}.
Assume that each Ey is compact, it follows from [20, Section 6] that the map
y 7→ Ey is Borel measurable from Y into K (X). We shall now study the mea-
surability of the Hewitt-Stromberg dimensions and measures of the sections.
By applying Theorems 1.2 and 1.3 we can use exactly the above argument to
prove the following result.

Theorem 1.4. Let E ⊂ Y ×X be a Borel set such that all the sections Ey are
compact for all y ∈ Y . One has

(1) the maps y 7→ dimMB(Ey) and y 7→ dimMB(Ey) are B(A )-measurable.
(2) If the Hewitt-Stromberg measures have the “subset of positive and finite

measure” propriety, then the maps y 7→ U g (Ey) and y 7→ V g (Ey) are
B(A )-measurable, where B(A ) denotes the σ-algebra generated by the
family A of analytic subsets of K (X).

In following result we show that the Hewitt-Stromberg measures and dimen-
sions functions need not be Borel measurable.

Theorem 1.5. The sets

E1 :=
{
K ∈ K ([0.1])

∣∣ dimMB(K) > 0
}
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and

E2 :=
{
K ∈ K ([0.1])

∣∣ dimMB(K) > 0
}

are an analytic non-Borel sets. In particular, the maps dimMB, dimMB, U g,
V g : K (X) −→ [0,+∞] are, in general, not Borel measurable.

Remark 1.2. (1) Here we will give an indication that the subset of positive and
finite measure propriety is satisfied for the Hewitt-Stromberg measures. By
the way, there are many special cases for which the above-mentioned property
is satisfied, for instance, we give a simple case in which it holds for the lower
Hewitt-Stromberg measure (the symmetrical result is true as well for the upper
Hewitt-Stromberg measure). For X = R, let E = [0, 1] and gt(r) = rt with

t = log 2
log 3 . It follows from dimMB(E) = 1 that U t(E) > 0. Now, if we take F

the middle-13 -Cantor set and by using the fact that the lower Hewitt-Stromberg
measure is a natural interpolation between the original Hausdorff and packing
measures, then we obtain 0 < U t(F ) < +∞.

(2) Theorem 1.3 (in particular, Theorem 1.4) shows that, if the Hewitt-
Stromberg measures have the “subset of positive and finite measure” propriety,
then these measures are measurable with respect to the σ-algebra generated
by the analytic sets. It is natural to ask if this condition can be omitted. We,
therefore, pose the following question:

Is it true that the Hewitt-Stromberg measures (even if the gauge function
satisfies the doubling condition) have the “subset of positive and finite

measure” propriety?

Let us mention that we have not been able to give a positive answer to this
problem.

(3) The definitions for the box-counting dimensions and Hewitt-Stromberg
dimensions can also be given in terms of the diameters of balls instead of their
radii as in [20, Section 5] and we obtain the same results.

(4) The study of the descriptive set-theoretic complexity of the multifractal
Hewitt-Stromberg measure and dimension maps introduced in [2, 27] will be
achieved in further works.

2. Proof of the main results

We present the tools, as well as the intermediate results and some notations,
which will be used in the proof of our main results. We will now briefly describe
the Borel Hierarchy used in the classification of the smoothness of the Hewitt-
Stromberg measure and dimension maps. For an ordinal γ with 1 < γ < ω1

(where ω1 is the first uncountable cardinal) we define the Baire classes Σ0
γ and

Π0
γ as follows:

Σ0
1 = Σ0

1(X) =
{

O ⊆ X
∣∣∣ O is open

}
,

Π0
1 = Π0

1(X) =
{

C ⊆ X
∣∣∣ C is closed

}
,
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Σ0
γ = Σ0

γ(X) =

{
+∞⋃
n=1

Wn

∣∣∣ Wn ∈
⋃
η<γ

Π0
η

}
and

Π0
γ = Π0

γ(X) =

{
+∞⋂
n=1

Wn

∣∣∣ Wn ∈
⋃
η<γ

Σ0
η

}
.

It is known that ⋃
η<ω1

Σ0
η =

⋃
η<ω1

Π0
η = B(X),

where B(X) denotes the Borel σ-algebra on X. The Borel hierarchy, therefore,
gives a ramification of the Borel sets in ω1 levels. Sometimes we will use the
traditional notation, G (X) = G for the family of open subsets of X, and the
traditional notation, F (X) = F for the family of closed subsets of X. We
have

Σ0
1 = G , Π0

1 = F ,

Σ0
2 = Fσ, Π0

2 = Gδ,

Σ0
3 = Gδσ, Π0

3 = Fσδ,

Σ0
4 = Fσδσ, Π0

4 = Gδσδ,

...
...

Let X and Y be two metric spaces and n ∈ N. A function f : X → Y is said
to be of Baire class n if f is Σ0

n+1-measurable. The functions of Baire class
0 are continuous, The functions of Baire class 1 are 1 step away from being
continuous, etc. It is known that a function f is of Baire class n if and only if
the function f is the pointwise limit of a sequence of functions of Baire class
n− 1.

Finally we recall the definition of an analytic set. Let A be a subset of a
Polish space is X. We say that A is analytic if it is the continuous image
of a Polish space, i.e., if there exist a Polish space Y and a continuous map
f : Y → X such that f(Y ) = A. Let X be a separable metric space, we denote
the family of analytic subsets of X by A (X). It is known that every Borel set
is analytic, i.e.,

B(X) ⊆ A := A (X).

In particular, we see that every Borel measurable map is B(A )-measurable,
where B(A ) denotes the σ-algebra generated by the family A of analytic
subsets of K (X).

The reader is referred to [16] for an excellent discussion of the Borel Hierar-
chy, Baire’s functions and analytic sets.

2.1. Proof of Theorem 1.1

The next result is essentially Lemma 9 in [25] (see also [15, Lemma 3.1] and
[22, Lemma 4.1]).
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Proposition 2.1. For all r > 0, the functions Nr : K (X) −→ [0,+∞] and
Mr : K (X) −→ [0,+∞] are respectively lower and upper semi-continuous.

As a consequence of Proposition 2.1 we have the next result.

Proposition 2.2. Let δ > 0.

(1) The function U
g

δ : K (X) −→ [0,+∞] is upper semi-continuous, in
particular of Baire class 1.

(2) The function V
g

δ : K (X) −→ [0,+∞] is lower semi-continuous, in
particular of Baire class 1.

(3) The functions U
g
, V

g
: K (X) −→ [0,+∞] are of Baire class 2 and

not of Baire class 1.

Proof. (1) It follows from Proposition 2.1 that the function K 7−→ Mr(K) is
upper semi-continues, which implies that the map

K 7−→ U
g

δ(K) = inf
0<r≤δ

Mr(K)g(2r)

is upper semi-continues and of Baire class 1.
(2) Proposition 2.1 implies that the function K 7−→ Nr(K) is lower semi-

continues, which implies that the map

K 7−→ V
g

δ(K) = sup
0<r≤δ

Nr(K)g(2r)

is lower semi-continues and of Baire class 1.
(3) It follows from the previous assertions that the functions U

g
, V

g
:

K (X) −→ [0,+∞] are of Baire class 2, since

U
g
(K) = lim

n→+∞
U

g
1
n
(K) and V

g
(K) = lim

n→+∞
V

g
1
n
(K)

for all K ∈ K (X).

We will now show that the function K 7→ U
g
(K) is not of Baire class 1.

The proof that the map K 7→ V
g
(K) is not of Baire class 1 is very similar and

is therefore omitted. If t > 0 and g(r) = rt, then we will follow the traditional
convention and write

U
g
(E) = U

t
(E),

it suffices to show that U
1
3 : K (X) −→ [0,+∞] is not of Baire class 1. Let

A =
{
E ∈ K (R)

∣∣∣ E is finite
}

and

B =
{
E ∪ F

∣∣∣ E ∈ K (R) is finite and F is a compact

line segment in R of positive length
}
.

Then we have

U
1
3 (G) =

{
0 if G ∈ A,

+∞ if G ∈ B.
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Which proves that the map K 7→ U
g
(K) is everywhere discontinuous and

consequently is not of Baire class 1. □

The following lemma gives some elementary properties of the box dimensions
which are verified in [9, Section 3.2].

Lemma 2.1. One has

(1) a smooth m-dimensional sub-manifold F of Rn has dimB(F) = m.
(2) The functions dimB and dimB are monotonic.
(3) dimB is finitely stable, i.e.,

dimB(E ∪ F) = max
(
dimB(E),dimB(F)

)
, ∀E,F ⊆ Rn,

the corresponding identity does not hold for dimB.
(4) dimB is finitely sub-stable, i.e.,

dimB(E ∪ F) ≥ max
(
dimB(E),dimB(F)

)
, ∀E,F ⊆ Rn.

Now, let us prove that the function dimB : K (X) −→ [0,+∞] is of Baire
class 2 and not of Baire class 1. Let s and t be two real numbers. It follows
from (1.2) and Proposition 2.2 that{

K ∈ K (X)
∣∣∣ s < dimB(K) < t

}
=

⋃
n≥1

{
K ∈ K (X)

∣∣∣ U s+ 1
n (K) > 1

}
⋂⋃

n≥1

{
K ∈ K (X)

∣∣∣ U t− 1
n (K) < 1

} ∈ Gδσ.

Therefore the map K 7→ dimB(K) is of Baire class 2. We will now show that
the map K 7→ dimB(K) is not of Baire class 1. Consider the following sets

A =
{
E ∈ K (R)

∣∣∣ E is finite
}

and

B =
{
E ∪ F

∣∣∣ E ∈ K (R) is finite and F is a compact line segment in R

of positive length
}
.

The sets A and B are dense in K (R). Moreover, if G ∈ A, dimB(G) = 0 and
if G ∈ B, then G = E ∪ F with E is finite and F is a compact line segment in
R of positive length, which leads by using Lemma 2.1 to

1 = max (dimB(E),dimB(F)) ≤ dimB(G)

≤ dimB(G)

= max
(
dimB(E),dimB(F)

)
= 1.
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Therefore, dimB(G) = 1. Which proves that the map K 7→ dimB(K) is every-
where discontinuous and consequently is not of Baire class 1.

By using similar techniques the other statement follows immediately from
(1.3), Proposition 2.2 and Lemma 2.1.

2.2. Proof of Theorem 1.2

The characterizations (1.4) and (1.5) of the Hewitt-Stromberg dimensions
lead to the following proposition.

Proposition 2.3.

(1) (a) Suppose c ∈ R, K ∈ K (X) and dimMB(K) > c. Then there is a
non-empty compact set L ⊂ K such that dimMB(L ∩ V ) ≥ c for
all open sets V with L ∩ V ̸= ∅.

(b) Let c ∈ R and K ∈ K (X). Then dimMB(K) ≥ c if and only if
for every d < c there is a non-empty compact set L ⊂ K such that
dimB(L ∩ V ) ≥ d for all open sets V with L ∩ V ̸= ∅.

(2) (a) Suppose c ∈ R, K ∈ K (X) and dimMB(K) > c. Then there is a
non-empty compact set L ⊂ K such that dimMB(L ∩ V ) ≥ c for
all open sets V with L ∩ V ̸= ∅.

(b) Let c ∈ R and K ∈ K (X). Then dimMB(K) ≥ c if and only if
for every d < c there is a non-empty compact set L ⊂ K such that
dimB(L ∩ V ) ≥ d for all open sets V with L ∩ V ̸= ∅.

Proof. (1) (a) Consider L0 = K and define a transfinite sequence of compact
subsets of K by iteration for each ordinal α, as follows:

Lα+1 =
{
x ∈ Lα

∣∣∣ dimMB (Lα ∩ V ) ≥ c for all neighborhood V of x
}
.

For each limit ordinal λ, we let Lλ =
⋂

β<λ Lβ . As (Lα)α is a descending
transfinite sequence of compact sets, there exists a countable ordinal γ such
that Lγ = Lγ+1. Note that for each ordinal α we have dimMB (Lα\Lα+1) ≤ c.
We assume that for each countable ordinal α we have dimMB(Lα) > c. This
is certainly true for α = 0. Now, suppose this claim holds for all β < α. Let
α = τ + 1, it follows from Lτ = Lτ+1 ∪ (Lτ\Lτ+1) that

dimMB(Lτ+1) = dimMB(Lα) > c.

Now suppose that α is a countable limit ordinal, it follows from

L0 =
⋃
β<α

(Lβ\Lβ+1) ∪ Lα

that dimMB(Lα) > c. Finally, put L = Lγ which implies that L ̸= ∅. Suppose
there were some open set V such that

dimMB(L ∩ V ) < c and L ∩ V ̸= ∅,
then Lγ+1 ̸= Lγ which is a contradiction.

(b) “=⇒” It follows immediately from the first assertion.
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“⇐=” We assume that the stated condition holds and

dimMB(K) < c.

Then we can choose d < c for which dimMB(K) < d. It follows from (1.4) that
there are compact sets K1,K2, . . . such that

K ⊂
∞⋃
i=1

Ki and dimBKi < d for all i.

Now, we let L ⊂ K be non-empty, compact such that dimB(L ∩ V ) ≥ d for all
open sets V with L ∩ V ̸= ∅. Since L =

⋃∞
i=1 (L ∩Ki), it follows from Baire’s

category theorem that L∩Ki has non-empty interior relative to L, for some i.
Then, there is an open set V with

∅ ≠ L ∩ V ⊂ L ∩ V ⊂ L ∩Ki

which implies that

dimB(L ∩ V ) ≤ dimB (L ∩Ki) < d

which is a contradiction.
(2) The proof of assertion 2 is very similar to the proof of assertion 1 and is

therefore omitted. □

Proof of Theorem 1.2. Let us prove that dimMB : K (X) −→ [0,∞] is B(A )-
measurable. It is sufficient to prove that, for any c ∈ R, the set

A =
{
K ∈ K (X)

∣∣∣ dimMB(K) ≥ c
}

is analytic. Let (xi)i be a countable dense subset of X and r be a positive
rational. For positive integers i and m we consider the following sets

F =
{
(K,L) ∈ K (X)× K (X)

∣∣∣ L ⊂ K
}
,

Bi(r) =
{
(K,L) ∈ K (X)× K (X)

∣∣∣ B◦(xi, r) ∩ L = ∅
}
,

and

Cm,i(r) =

{
(K,L) ∈ K (X)× K (X)

∣∣∣ dimB (B(xi, r) ∩ L) ≥ c− 1

m

}
.

It follows from Proposition 2.3(1) that{
K ∈ K (X)

∣∣∣ dimMB(K) ≥ c
}

=
⋂
m

{
K ∈ K (X)

∣∣∣ there exists L ⊂ K such that L is non-empty compact

and if U ⊂ X is open and L ∩ U ̸= ∅, then dimB(L ∩ U) ≥ c− 1

m

}
=
⋂
m

π
({

(K,L) ∈ K (X)× K (X)
∣∣∣ L ⊆ K

}
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(K,L) ∈ K (X)× K (X)

∣∣∣ if i ∈ N, r ∈ Q∗
+ with

B◦(xi, r) ∩ L ̸= ∅, then dimB(L ∩B(xi, r)) ≥ c− 1

m

})
=
⋂
m

(
π
(
F ∩

⋂
i

⋂
r∈Q∗

+

(
Bi(r) ∪ Cm,i(r)

)))
.

The sets F and Bi(r) are clearly closed, and it follows from Theorem 1.1 that
the set Cm,i(r) is Borel. Consequently, A is an analytic subset of K (X). □

2.3. Proof of Theorem 1.3

First, let us prove that the map U g : K (X) → [0,+∞] is B(A )-measurable.
It is sufficient to prove that, for all c ∈ R, the set{

K ∈ K (X)
∣∣∣ U g(K) ≥ c

}
is analytic. We may assume c > 0 and let

π : K (X)× P(X) −→ K (X)

(K,µ) 7−→ K,

here P(X) denotes the family of Borel probability measures on X equipped
with the weak topology. It follows from the “subset of positive and finite mea-
sure” propriety that, for any compact K checked U g(K) ≥ c, there exists a
compact set L ⊆ K such that c ≤ U g(L) < +∞. Now, we define a Borel
probability measure

µ(E) =
U g(E ∩ L)

U g(L)
for all Borel subset E of X.

Observe that suppµ ⊂ K and c µ(M) ≤ U g(M) for all M ∈ K (X), where
suppµ denotes the topological support of µ. Inversely, if there exists µ ∈
P(X) such that suppµ ⊂ K and c µ(M) ≤ U g(M) for all M ∈ K (X), then
U g(K) ≥ c. Which means that{

K ∈ K (X)
∣∣∣ U g(K) ≥ c

}
= π(A),

where

A =
{
(K,µ) ∈ K (X)× P(X)

∣∣∣ suppµ ⊂ K and

c µ(M) ≤ U g(M), ∀M ∈ K (X)
}
.

Then it is sufficient to prove that A is a Borel set. One has

A = B
⋂( ∞⋂

i=1

Ai

)
,

where

B =
{
(K,µ) ∈ K (X)× P(X)

∣∣∣ suppµ ⊂ K
}
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and

Ai=
{
(K,µ) ∈ K (X)×P(X)

∣∣∣ c µ(M) ≤ U
g
1
i
(M) for compact sets M ⊂ K

}
.

The set B is closed and (k, µ) ∈ Ai if and only if for every k ∈ N, every compact

M ⊆ K and 0 < r < 1
i there exists a packing

(
B(xj , r)

)n
j=1

of M such that(
c− 1

k

)
µ(M)

n
< g(2r).

For a fixed k, this set is open, which implies that the set

Ai =

+∞⋂
k=1

{
(K,µ) ∈ K (X)× P(X)

∣∣∣ (c− 1

k

)
µ(M) < U

g
1
i
(M)

for all compactM ⊂ K
}

is a Gδ-set. Thus, we can conclude that A is a Borel set.
The proof of the measurability of the measure V g is very similar and is

therefore omitted. Which achieve the proof of Theorem 1.3.

2.4. Proof of Theorem 1.5

The proof of Theorem 1.5 is similar to the original argument by Mattila
and Mauldin in [20, Theorem 7.5]. For the reader’s convenience, we give short
proofs of forms suitable for our purposes. We will prove that E1 is an analytic
non-Borel set. The proof for the set E2 is very similar and is therefore omitted.

It is well-known that each x ∈ R possesses a unique continued fraction
expansion of the form

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

a5 +
.. .

,

where ak ∈ N := {1, 2, 3, . . .} is the k-th partial quotient of x. This expansion
is usually denoted by x = [a1, a2, a3, . . .]. x ∈ Q if and only if the sequence
(ak)k is finite. Let Qc denote the set of irrational number and

x = [a1, a2, . . .] ∈ [0, 1] ∩Qc.

We define

Γ(x) =
{
[a1, k1, a2, k2, . . .]

∣∣ ki ∈ N for i ∈ N
}
.

By using almost identical to the original argument by Mauldin and Mattila in
[20, Section 7] there is c ∈ (0, 12 ] such that, for all x ∈ [0, 1] ∩Qc, we have

c ≤ dimMB(Γ(x)) ≤ dimMB(Γ(x)).(2.1)
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It follows from the proof of Theorem 1.2 that E1 is an analytic set. To prove
that E1 is a non-Borel set (using the completeness method in [16,17]), it suffices
to show that, for an analytic subset A of a Polish space X, we can find a Borel
measurable function f of X into K ([0, 1]) such that f−1(E1) = A, i.e., E1 is a
Σ1

1-complete set. For this, let A be an analytic subset of a Polish space X and
g be a continuous function of Y = NN onto A. For x = (a1, a2, a3, . . .) ∈ Y ,
we define the function

ϕ(x) = (a1, a3, a5, . . .) .

It is clear that ϕ is a continuous function of Y onto Y . Let ψ = g ◦ϕ : Y → A,
which is also continuous. Also, for all t ∈ A with g (a1, a2, a3, . . .) = t, we have

Γ(x) = Γ (a1, a2, a3, . . .) ⊆ ψ−1{t}.

It follows from (2.1) that

c ≤ dimMB(ψ
−1{t}) ≤ dimMB(ψ

−1{t}) for all t ∈ A.

Let K be the closure of
{
(ψ(τ), τ)

∣∣ τ ∈ Y
}
, which is a closed subset of

X × [0, 1]. Let t ∈ A. Then

ψ−1{t} ⊆ Kt :=
{
y ∈ [0, 1]

∣∣ (t, y) ∈ K
}
,

which implies that

c ≤ dimMB(Kt) ≤ dimMB(Kt).

Now, let t ∈ X and y ∈ Kt then we can choose a sequence τi ∈ Y with
(ψ (τi) , τi) → (t, y) as i→ +∞. If y ∈ Y is irrational, then t = limi→+∞ ψ (τi)
= ψ(y) ∈ A which gives that, for all t ∈ X\A,

Kt ⊆ Q and dimMB(Kt) = dimMB(Kt) = 0.

Finally, we have proven that there is a function f : X → K ([0, 1]), t 7→ f(t) =
Kt such that f−1(E1) = A. Which achieve the proof of Theorem 1.5.
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