DOI QR코드

DOI QR Code

Transcriptional Interplay between Malassezia restricta and Staphylococcus Species Co-Existing in the Skin Environment

  • Hyun Oh Yang (Department of Systems Biotechnology, Chung-Ang University) ;
  • Yong-Joon Cho (Department of Molecular Bioscience, Kangwon National University) ;
  • Jae Min Lee (Department of Systems Biotechnology, Chung-Ang University) ;
  • Kyoung-Dong Kim (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2022.12.13
  • Accepted : 2023.01.02
  • Published : 2023.03.28

Abstract

Malassezia and Staphylococcus are the most dominant genera in human skin microbiome. To explore the inter-kingdom interactions between the two genera, we examined the transcriptional changes in Malassezia and Staphylococcus species induced upon co-culturing. RNA-seq analyses revealed that genes encoding ribosomal proteins were upregulated, while those encoding aspartyl proteases were downregulated in M. restricta after co-culturing with Staphylococcus species. We identified MRET_3770 as a major secretory aspartyl protease coding gene in M. restricta through pepstatin-A affinity chromatography followed by mass spectrometry and found that the expression of MRET_3770 was significantly repressed upon co-culturing with Staphylococcus species or by incubation in media with reduced pH. Moreover, biofilm formation by Staphylococcus aureus was inhibited in the spent medium of M. restricta, suggesting that biomolecules secreted by M. restricta such as secretory aspartyl proteases may degrade the biofilm structure. We also examined the transcriptional changes in S. aureus co-cultured with M. restricta and found co-cultured S. aureus showed increased expression of genes encoding ribosomal proteins and downregulation of those involved in riboflavin metabolism. These transcriptome data of co-cultured fungal and bacterial species demonstrate a dynamic interplay between the two co-existing genera.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation of Korea (NRF) to K.K. (2019R1F1A1061826, 2019R1A4A1024764, and 2022R1A2C1004423).

References

  1. Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hansch GM, Filler SG, et al. 2015. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 161: 168-181. https://doi.org/10.1099/mic.0.083485-0
  2. Bumroongthai K, Chetanachan P, Niyomtham W, Yurayart C, Prapasarakul N. 2016. Biofilm production and antifungal susceptibility of co-cultured Malassezia pachydermatis and Candida parapsilosis isolated from canine seborrheic dermatitis. Med. Mycol. 54: 544-549. https://doi.org/10.1093/mmy/myw002
  3. Janus MM, Willems HM, Krom BP. 2016. Candida albicans in multispecies oral communities; a keystone commensal? Adv. Exp. Med. Biol. 931: 13-20. https://doi.org/10.1007/5584_2016_5
  4. Lee K, Zhang I, Kyman S, Kask O, Cope EK. 2020. Co-infection of Malassezia sympodialis with bacterial pathobionts Pseudomonas aeruginosa or Staphylococcus aureus leads to distinct sinonasal inflammatory responses in a murine acute sinusitis model. Front. Cell Infect. Microbiol. 10: 472.
  5. Warmink JA, van Elsas JD. 2009. Migratory response of soil bacteria to Lyophyllum sp. strain Karsten in soil microcosms. Appl.Environ. Microbiol. 75: 2820-2830. https://doi.org/10.1128/AEM.02110-08
  6. Schroeckh V, Scherlach K, Nutzmann HW, Shelest E, Schmidt-Heck W, Schuemann J, et al. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 106: 14558-14563. https://doi.org/10.1073/pnas.0901870106
  7. Kastman EK, Kamelamela N, Norville JW, Cosetta CM, Dutton RJ, Wolfe BE. 2016. Biotic Interactions shape the ecological distributions of Staphylococcus species. mBio 7: e01157-16.
  8. Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, et al. 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9: 3429.
  9. Schmid-Wendtner MH, Korting HC. 2006. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 19: 296-302. https://doi.org/10.1159/000094670
  10. Grice EA, Segre JA. 2011. The skin microbiome. Nat. Rev. Microbiol. 9: 244-253. https://doi.org/10.1038/nrmicro2537
  11. Boxberger M, Cenizo V, Cassir N, La Scola B. 2021. Challenges in exploring and manipulating the human skin microbiome. Microbiome 9: 125.
  12. Riesenfeld CS, Schloss PD, Handelsman J. 2004. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38: 525-552. https://doi.org/10.1146/annurev.genet.38.072902.091216
  13. Byrd AL, Belkaid Y, Segre JA. 2018. The human skin microbiome. Nat. Rev. Microbiol. 16: 143-155. https://doi.org/10.1038/nrmicro.2017.157
  14. Belkaid Y, Segre JA. 2014. Dialogue between skin microbiota and immunity. Science 346: 954-959. https://doi.org/10.1126/science.1260144
  15. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498: 367-370. https://doi.org/10.1038/nature12171
  16. Park M, Park S, Jung WH. 2021. Skin commensal fungus Malassezia and its lipases. J. Microbiol. Biotechnol. 31: 637-644. https://doi.org/10.4014/jmb.2012.12048
  17. Chua W, Poh SE, Li H. 2022. Secretory proteases of the human skin microbiome. Infect. Immun. 90: e0039721.
  18. Poh SE, Goh JPZ, Fan C, Chua W, Gan SQ, Lim PLK, et al. 2020. Identification of Malassezia furfur secreted aspartyl protease 1 (MfSAP1) and its role in extracellular matrix degradation. Front. Cell Infect. Microbiol. 10: 148.
  19. Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, et al. 2018. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138: 1137-1145. https://doi.org/10.1016/j.jid.2017.11.034
  20. Martin DE, Soulard A, Hall MN. 2004. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119: 969-979. https://doi.org/10.1016/j.cell.2004.11.047
  21. Warner JR. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24: 437-440. https://doi.org/10.1016/S0968-0004(99)01460-7
  22. Nomura M. 2001. Ribosomal RNA genes, RNA polymerases, nucleolar structures, and synthesis of rRNA in the yeast Saccharomyces cerevisiae. Cold Spring Harb Symp. Quant. Biol. 66: 555-565. https://doi.org/10.1101/sqb.2001.66.555
  23. Lund PA, De Biase D, Liran O, Scheler O, Mira NP, Cetecioglu Z, et al. 2020. Understanding how microorganisms respond to acid pH Is central to their control and successful exploitation. Front. Microbiol. 11: 556140.
  24. Goh JPZ, Ruchti F, Poh SE, Koh WLC, Tan KY, Lim YT, et al. 2022. The human pathobiont Malassezia furfur secreted protease Mfsap1 regulates cell dispersal and exacerbates skin inflammation. Proc. Natl. Acad. Sci. USA 119: e2212533119.
  25. Nomura M, Gourse R, Baughman G. 1984. Regulation of the synthesis of ribosomes and ribosomal components. Annu. Rev. Biochem. 53: 75-117. https://doi.org/10.1146/annurev.bi.53.070184.000451
  26. Lemke JJ, Sanchez-Vazquez P, Burgos HL, Hedberg G, Ross W, Gourse RL. 2011. Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc. Natl. Acad. Sci. USA 108: 5712-5717. https://doi.org/10.1073/pnas.1019383108
  27. Wang H, Mann PA, Xiao L, Gill C, Galgoci AM, Howe JA, et al. 2017. Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chem. Biol. 24: 576-588 e576.
  28. Gutierrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA, Garcia-Angulo VA. 2015. Extensive identification of bacterial riboflavin transporters and their distribution across bacterial species. PLoS One 10: e0126124.
  29. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. 2002. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 30: 3141-3151. https://doi.org/10.1093/nar/gkf433
  30. Serganov A, Huang L, Patel DJ. 2009. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458: 233-237. https://doi.org/10.1038/nature07642
  31. Gelfand MS, Mironov AA, Jomantas J, Kozlov YI, Perumov DA. 1999. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet. 15: 439-442. https://doi.org/10.1016/S0168-9525(99)01856-9
  32. Fischer M, Bacher A. 2005. Biosynthesis of flavocoenzymes. Nat. Prod. Rep. 22: 324-350. https://doi.org/10.1039/b210142b
  33. Zhang P, Wang J, Shi Y. 2010. Structure and mechanism of the S component of a bacterial ECF transporter. Nature 468: 717-720. https://doi.org/10.1038/nature09488
  34. Midgley G. 1989. The diversity of Pityrosporum (Malassezia) yeasts in vivo and in vitro. Mycopathologia 106: 143-153. https://doi.org/10.1007/BF00443055
  35. Leeming JP, Notman FH. 1987. Improved methods for isolation and enumeration of Malassezia furfur from human skin. J. Clin. Microbiol. 25: 2017-2019. https://doi.org/10.1128/jcm.25.10.2017-2019.1987
  36. Doyle JE, Mehrhof WH, Ernst RR. 1968. Limitations of thioglycolate broth as a sterility test medium for materials exposed to gaseous ethylene oxide. Appl. Microbiol. 16: 1742-1744. https://doi.org/10.1128/am.16.11.1742-1744.1968
  37. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  38. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISATgenotype. Nat. Biotechnol. 37: 907-915. https://doi.org/10.1038/s41587-019-0201-4
  39. Liao Y, Smyth GK, Shi W. 2013. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41: e108.
  40. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.