DOI QR코드

DOI QR Code

Resistome Study in Aquatic Environments

  • Hanseob Shin (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Yongjin Kim (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Seunggyun Han (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Hor-Gil Hur (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • Received : 2022.10.26
  • Accepted : 2022.12.16
  • Published : 2023.03.28

Abstract

Since the first discovery of antibiotics, introduction of new antibiotics has been coupled with the occurrence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Rapid dissemination of ARB and ARGs in the aquatic environments has become a global concern. ARB and ARGs have been already disseminated in the aquatic environments via various routes. Main hosts of most of ARGs were found to belong to Gammaproteobacteria class, including clinically important potential pathogens. Transmission of ARGs also occurs by horizontal gene transfer (HGT) mechanisms between bacterial strains in the aquatic environments, resulting in ubiquity of ARGs. Thus, a few of ARGs and MGEs (e.g., strA, sul1, int1) have been suggested as indicators for global comparability of contamination level in the aquatic environments. With ARB and ARGs contamination, the occurrence of critical pathogens has been globally issued due to their widespread in the aquatic environments. Thus, active surveillance systems have been launched worldwide. In this review, we described advancement of methodologies for ARGs detection, and occurrence of ARB and ARGs and their dissemination in the aquatic environments. Even though numerous studies have been conducted for ARB and ARGs, there is still no clear strategy to tackle antibiotic resistance (AR) in the aquatic environments. At least, for consistent surveillance, a strict framework should be established for further research in the aquatic environments.

Keywords

References

  1. Fleming, A. 1929. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10: 226-236.
  2. Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74: 417-433. https://doi.org/10.1128/MMBR.00016-10
  3. Yesim C, Pamela F, Glen MC. 2000. Vancomycin-resistant Enterococci. Clin. Microbiol. Rev. 13: 686-707. https://doi.org/10.1128/CMR.13.4.686
  4. Centers for Disease Control and Prevention (CDC). 2002. Staphylococcus aureus resistant to vancomycin-United States 2002. MMWR. Morb. Mortal. Wkly. Rep. 51: 565-567.
  5. Jevons MP. 1961. January. "Celbenin"-resistant Staphylococci. Br. Med. J. 1: 124-125. https://doi.org/10.1136/bmj.1.5219.124-a
  6. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45: 1151-1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001
  7. Tacconelli E, Magrini N, Kahlmeter G, Singh N. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Heal. Organ. pp.1-7.
  8. Mancuso G, Midiri A, Gerace E, Biondo C. 2021. Bacterial antibiotic resistance: the most critical pathogens. Pathogens 10: 1310.
  9. John P, Holdren, Eric S. Lander. 2014. Reort to the president on combating
  10. Bengtsson-Palme J, Kristiansson E, Larsson DGJ. 2018. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42: fux053.
  11. Hooban B, Joyce A, Fitzhenry K, Chique C, Morris D. 2020. The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: a scoping review. Water Res. 180: 115880.
  12. Li L-G, Xia Y, Zhang T. 2017. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 11: 651-662. https://doi.org/10.1038/ismej.2016.155
  13. Wang Y, Lu J, Engelstadter J, Zhang S, Ding P, Mao L, et al. 2020. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME J. 14: 2179-2196. https://doi.org/10.1038/s41396-020-0679-2
  14. Amos GCA, Zhang L, Hawkey PM, Gaze WH, Wellington EM. 2014. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. Vet. Microbiol. 171: 441-447. https://doi.org/10.1016/j.vetmic.2014.02.017
  15. Asokan GV, Ramadhan T, Ahmed E, Sanad H. 2019. WHO global priority pathogens list: a bibliometric analysis of medline-PubMed for knowledge mobilization to infection prevention and control practices in bahrain. Oman Med. J. 34: 184-193. https://doi.org/10.5001/omj.2019.37
  16. Jiang L, Hu X, Xu T, Zhang H, Sheng D, Yin D. 2013. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci. Total Environ. 458-460: 267-272. https://doi.org/10.1016/j.scitotenv.2013.04.038
  17. Uta B, Hans-Henno D, Neus A-GM, Miquel Sde M, Valter T, Caterina L, et al. 2009. Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl. Environ. Microbiol. 75: 154-163. https://doi.org/10.1128/AEM.01649-08
  18. Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, et al. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 109: 1691-1696. https://doi.org/10.1073/pnas.1120238109
  19. George PBL, Rossi F, St-Germain M-W, Amato P, Badard T, Bergeron MG, et al. 2022. Antimicrobial resistance in the environment: towards elucidating the roles of bioaerosols in transmission and detection of antibacterial resistance genes. Antibiotics 11: 974.
  20. Muziasari WI, Parnanen K, Johnson TA, Lyra C, Karkman A, Stedtfeld RD, et al. 2016. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 92: fiw052.
  21. Karkman A, Johnson TA, Lyra C, Stedtfeld RD, Tamminen M, Tiedje JM, et al. 2016. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 92: fiw014.
  22. Fernanda PA, Liu S, Yuan T, Ramalingam B, Lu J, Sekar R. 2022. Diversity and abundance of antibiotic resistance genes and their relationship with nutrients and land use of the inflow rivers of Taihu Lake. Front. Microbiol. 13: 1009297
  23. Muurinen J, Stedtfeld R, Karkman A, Parnanen K, Tiedje J, Virta M. 2017. Influence of manure application on the environmental resistome under finnish agricultural practice with restricted antibiotic use. Environ. Sci. Technol. 51: 5989-5999. https://doi.org/10.1021/acs.est.7b00551
  24. Stedtfeld RD, Guo X, Stedtfeld TM, Sheng H, Williams MR, Hauschild K, et al. 2018. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 94: fiy130.
  25. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. 2013. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 59: 892-902. https://doi.org/10.1373/clinchem.2013.206375
  26. Wang X, Gu J, Gao H, Qian X, Li H. 2018. Abundances of clinically relevant antibiotic resistance genes and bacterial community diversity in the weihe river, China. Int. J. Environ. Res. Public Health. 708. doi: 10.3390/ijerph15040708.
  27. Cave L, Brothier E, Abrouk D, Bouda PS, Hien E, Nazaret S. 2016. Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues. Appl. Microbiol. Biotechnol. 100: 10597-10608. https://doi.org/10.1007/s00253-016-7950-5
  28. Cao Y, Raith MR, Griffith JF. 2015. Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment. Water Res. 70: 337-349. https://doi.org/10.1016/j.watres.2014.12.008
  29. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35: 833-844. https://doi.org/10.1038/nbt.3935
  30. Tully BJ, Graham ED, Heidelberg JF. 2018. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5: 170203.
  31. Cui G, Liu Z, Xu W, Gao Y, Yang S, Grossart H-P, et al. 2022. Metagenomic exploration of antibiotic resistance genes and their hosts in aquaculture waters of the semi-closed Dongshan Bay (China). Sci. Total Environ. 838: 155784.
  32. Bai Y, Ruan X, Li R, Zhang Y, Wang Z. 2022. Metagenomics-based antibiotic resistance genes diversity and prevalence risk revealed by pathogenic bacterial host in Taihu Lake, China. Environ. Geochem. Health 44: 2531-2543. https://doi.org/10.1007/s10653-021-01021-x
  33. Spencer SJ, Tamminen M V, Preheim SP, Guo MT, Briggs AW, Brito IL, et al. 2016. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10: 427-436. https://doi.org/10.1038/ismej.2015.124
  34. Gonzalez LS, Spencer JP. 1998. Aminoglycosides: a practical review. Am. Fam. Physician 58: 1811-1820.
  35. Lin M-F, Liou M-L, Tu C-C, Yeh H-W, Lan C-Y. 2013. Molecular epidemiology of integron-associated antimicrobial gene cassettes in the clinical isolates of Acinetobacter baumannii from northern Taiwan. Ann. Lab. Med. 33: 242-247. https://doi.org/10.3343/alm.2013.33.4.242
  36. Shin H, Kim Y, Han D, Hur H. 2021. Emergence of high level carbapenem and extensively drug resistant Escherichia coli ST746 producing NDM-5 in influent of wastewater treatment plant, Seoul, South Korea. Front. Microbiol. 12: 645411.
  37. Cairns J, Ruokolainen L, Hultman J, Tamminen M, Virta M, Hiltunen T. 2018. Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Commun. Biol. 1: 35.
  38. Carey AM, Capik SF, Giebel S, Nickodem C, Pineiro JM, Scott HM, et al. 2022. Prevalence and profiles of antibiotic resistance genes mph(A) and qnrB in extended-spectrum Beta-Lactamase (ESBL)-producing Escherichia coli isolated from dairy calf feces. Microorganism 10: 411.
  39. Legese MH, Asrat D, Aseffa A, Hasan B, Mihret A, Swedberg G. 2022. Molecular epidemiology of extended-spectrum beta-lactamase and AmpC producing enterobacteriaceae among sepsis patients in Ethiopia: a prospective multicenter study. Antbiotics 11: 131.
  40. Islam MS, Sobur MA, Rahman S, Ballah FM, Ievy S, Siddique MP, et al. 2022. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV genes among extended-spectrum beta-lactamase-producing Escherichia coli isolated from migratory birds travelling to Bangladesh. Microb. Ecol. 83: 942-950. https://doi.org/10.1007/s00248-021-01803-x
  41. Bush K, Jacoby GA. 2010. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 54: 969-976. https://doi.org/10.1128/AAC.01009-09
  42. Weldhagen GF. 2004. Integrons and β-lactamases-a novel perspective on resistance. Int. J. Antimicrob. Agents 23: 556-562. https://doi.org/10.1016/j.ijantimicag.2004.03.007
  43. Schluter A, Szczepanowski R, Puhler A, Top EM. 2007. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol. Rev. 31: 449-477. https://doi.org/10.1111/j.1574-6976.2007.00074.x
  44. Stachurova T, Pikova H, Bartas M, Semerad J, Svobodova K, Malachova K. 2021. Beta-lactam resistance development during the treatment processes of municipal wastewater treatment plants. Chemosphere 280: 130749.
  45. Alekshun MN, Levy SB. 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell 128: 1037-1050. https://doi.org/10.1016/j.cell.2007.03.004
  46. Pruden A, Pei R, Storteboom H, Carlson KH. 2006. Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ. Sci. Technol. 40: 7445-7450. https://doi.org/10.1021/es060413l
  47. Wu S, Dalsgaard A, Hammerum AM, Porsbo LJ, Jensen LB. 2010. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human. Acta Vet. Scand. 52: 47.
  48. Byrne-Bailey KG, Gaze WH, Kay P, Boxall ABA, Hawkey PM, Wellington EMH. 2009. Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrob. Agents Chemother. 53: 696-702. https://doi.org/10.1128/AAC.00652-07
  49. Gosia K Kozak, David L Pearl, Julia Parkman, Richard J Reid-Smith, Anne Deckert, Patrick Boerlin. 2009. Distribution of sulfonamide resistance genes in Escherichia coli and Salmonella Isolates from swine and chickens at abattoirs in Ontario and Quebec, Canada . Appl. Environ. Microbiol. 75: 5999-6001. https://doi.org/10.1128/AEM.02844-08
  50. Chen B, Liang X, Nie X, Huang X, Zou S, Li X. 2015. The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China. J. Hazard. Mater. 282: 61-67. https://doi.org/10.1016/j.jhazmat.2014.06.010
  51. Vincent P, Patrick B. 2003. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob. Agents Chemother. 47: 1169-1172. https://doi.org/10.1128/AAC.47.3.1169-1172.2003
  52. Roberts MC. 2002. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol. Biotechnol. 20: 261-283. https://doi.org/10.1385/MB:20:3:261
  53. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47: 3675-3681. https://doi.org/10.1128/AAC.47.12.3675-3681.2003
  54. Roberts MC. 2007. Genetic mobility and distribution of tetracycline resistance determinants. Ciba Found. Symp. 207: 206-218. https://doi.org/10.1002/9780470515358.ch13
  55. Zhang XX, Zhang T, Fang HHP. 2009. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 82: 397-414. https://doi.org/10.1007/s00253-008-1829-z
  56. Kobayashi T, Suehiro F, Cach Tuyen B, Suzuki S. 2007. Distribution and diversity of tetracycline resistance genes encoding ribosomal protection proteins in Mekong river sediments in Vietnam. FEMS Microbiol. Ecol. 59: 729-737. https://doi.org/10.1111/j.1574-6941.2006.00244.x
  57. Tao R, Ying G-G, Su H-C, Zhou H-W, Sidhu JPS. 2010. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. Environ. Pollut. 158: 2101-2109. https://doi.org/10.1016/j.envpol.2010.03.004
  58. Guan Y, Jia J, Fan X, Li K, Wang Z. 2022. Anthropogenic impacts on antibiotic resistance genes and their hosts from pristine to urban river using metagenomic and binning approaches. Aquat. Toxicol. 249: 106221.
  59. Perewari DO, Otokunefor K, Agbagwa OE. 2022. Tetracycline-resistant genes in Escherichia coli from clinical and nonclinical sources in Rivers State, Nigeria. Int. J. Microbiol. 2022: 9192424.
  60. Marti E, Jofre J, Balcazar JL. 2013. Prevalence of antibiotic resistance genes and bacterial community composition in a river nfluenced by a wastewater treatment plant. PLoS One 8: e78906.
  61. Shin H, Kim Y, Raza S, Unno T, Ryu S-H, Hur H-G. 2022. Dynamics of genotypic and phenotypic antibiotic resistance in a conventional wastewater treatment plant in 2 years. Front. Microbiol. 13: 898339.
  62. Kloesges T, Popa O, Martin W, Dagan T. 2011. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths research article. Mol. Biol. Evol. 28: 1057-1074. https://doi.org/10.1093/molbev/msq297
  63. Benler S, Faure G, Altae-Tran H, Shmakov S, Zheng F, Koonin E. 2021. Cargo genes of Tn7-like transposons comprise an enormous diversity of defense systems, mobile genetic elements, and antibiotic resistance genes. mBio 12: e0293821.
  64. Alfredo T, Brian A, CTT. 2012. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ. Health Perspect. 120: 1100-1106. https://doi.org/10.1289/ehp.1104650
  65. Gao F-Z, Zou H-Y, Wu D-L, Chen S, He L-Y, Zhang M, et al. 2020. Swine farming elevated the proliferation of acinetobacter with the prevalence of antibiotic resistance genes in the groundwater. Environ. Int. 136: 105484.
  66. Azam M, Kumar V, Siddiqui K, Jan AT, Sabir JSM, Rather IA, et al. 2020. Pharmaceutical disposal facilitates the mobilization of resistance determinants among microbiota of polluted environment. Saudi Pharm. J. 28: 1626-1634. https://doi.org/10.1016/j.jsps.2020.10.009
  67. Buri I, Kuchta P, Mol A, David V, Rul M, Lochman J, et al. 2021. Antibiotic resistance in wastewater and its impact on a receiving river?: a case study of WWTP Brno-Modrice, Czech Republic. Water 13: 2309.
  68. Kuchta SL, Cessna AJ. 2009. Fate of lincomycin in snowmelt runoff from manure-amended pasture. Chemosphere 76: 439-446. https://doi.org/10.1016/j.chemosphere.2009.03.069
  69. Kim S, Aga DS. 2007. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health. B. Crit. Rev. 10: 559-573. https://doi.org/10.1080/15287390600975137
  70. Durso LM, Miller DN, Wienhold BJ. 2012. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. PLoS One 7: e48325.
  71. Schwartz T, Kohnen W, Jansen B, Obst U. 2003. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol. 43: 325-335. https://doi.org/10.1111/j.1574-6941.2003.tb01073.x
  72. Zhang Y, Wang J, Lu J, Wu J. 2020. Antibiotic resistance genes might serve as new indicators for wastewater contamination of coastal waters: spatial distribution and source apportionment of antibiotic resistance genes in a coastal bay. Ecol. Indic. 114: 106299.
  73. Deguenon E, Dougnon V, Houssou VMC, Gbotche E, Ahoyo RA, Fabiyi K, et al. 2022. Hospital effluents as sources of antibiotics residues, resistant bacteria and heavy metals in Benin. SN Appl. Sci. 4: 206.
  74. Korzeniewska E, Korzeniewska A, Harnisz M. 2013. Ecotoxicology and environmental safety antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol. Environ. Saf. 91: 96-102. https://doi.org/10.1016/j.ecoenv.2013.01.014
  75. Raza S, Shin H, Hur H, Unno T, Shin H, Hur H, et al. 2021. Higher abundance of core antimicrobial resistant genes in effluent from wastewater treatment plants. Water Res. 208: 117882
  76. Lee K, Kim D, Lee D, Kim Y, Bu J, Cha J, et al. 2020. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 8: 2.
  77. Ouyang WY, Huang FY, Zhao Y, Li H, Su JQ. 2015. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl. Microbiol. Biotechnol. 99: 5697-5707. https://doi.org/10.1007/s00253-015-6416-5
  78. S Koike, I G Krapac, H D Oliver, A C Yannarell, JC Chee-Sanford, RI Aminov, et al. 2007. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol. 73: 4813-4823. https://doi.org/10.1128/AEM.00665-07
  79. Zhang X, Li Y, Liu B, Wang J, Feng C, Gao M, et al. 2014. Prevalence of veterinary antibiotics and antibiotic- resistant Escherichia coli in the surface water of a livestock production region in Northern China. PLoS One 9: 0111026
  80. Heuer H, Schmitt H, Smalla K. 2011. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14: 236-243. https://doi.org/10.1016/j.mib.2011.04.009
  81. Marti R, Scott A, Tien Y-C, Murray R, Sabourin L, Zhang Y, et al. 2013. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl. Environ. Microbiol. 79: 5701-5709. https://doi.org/10.1128/AEM.01682-13
  82. Zhao Y, Su J-Q, An X-L, Huang F-Y, Rensing C, Brandt KK, et al. 2018. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Sci. Total Environ. 621: 1224-1232. https://doi.org/10.1016/j.scitotenv.2017.10.106
  83. Pavelquesi SLS, de Oliveira Ferreira ACA, Rodrigues ARM, de Souza Silva CM, Orsi DC, da Silva ICR. 2021. Presence of tetracycline and sulfonamide resistance genes in Salmonella spp.: literature review. Antibiotics 10: 1314.
  84. L Qing, D Qigen, H Jian, W Hongjun, C Jingdu. 2022. Profiles of tetracycline resistance genes in paddy soils with three different organic fertilizer applications. Environ. Pollut. 306: 119368.
  85. Olonitola OS, Fahrenfeld N, Pruden A. 2015. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes1 1The authors express appreciation to the council for international exchange of scholars/institute of international educ. Poult. Sci. 94: 867-874. https://doi.org/10.3382/ps/pev069
  86. Xiao L, Estelle J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, et al. 2016. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1: 16161.
  87. Wang H, Sangwan N, Li H-Y, Su J-Q, Oyang W-Y, Zhang Z-J, et al. 2017. The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome. ISME J. 11: 100-111. https://doi.org/10.1038/ismej.2016.103
  88. Lu L, He Y, Peng C, Wen X, Ye Y, Ren D, et al. 2022. Dispersal of antibiotic resistance genes in an agricultural influenced multi-branch river network. Sci. Total Environ. 830: 154739.
  89. Razavi M, Kristiansson E, Flach C-F, Larsson DGJ, LaPara TM. 2020. The association between insertion sequences and antibiotic resistance genes. mSphere 5: e00418-20. https://doi.org/10.1128/mSphere.00418-20
  90. Razavi M, Marathe NP, Gillings MR, Flach C-F, Kristiansson E, Joakim Larsson DG. 2017. Discovery of the fourth mobile sulfonamide resistance gene. Microbiome 5: 160.
  91. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. 2008. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 190: 5095-5100. https://doi.org/10.1128/JB.00152-08
  92. Bennett PM. 2008. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 153: S347-S357. https://doi.org/10.1038/sj.bjp.0707607
  93. Partridge SR, Tsafnat G, Coiera E, Iredell JR. 2009. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev. 33: 757-784. https://doi.org/10.1111/j.1574-6976.2009.00175.x
  94. Couturier, M, Bex F, Bergquist PL, Maas WK. 1988. Identification and classification of bacterial plasmids. Microbiol. Rev. 52: 375-395. https://doi.org/10.1128/mr.52.3.375-395.1988
  95. Li Z, Li Z, Peng Y, Lu X, Kan B. 2022. Trans-regional and cross-host spread of mcr-carrying plasmids revealed by complete plasmid sequences-44 countries, 1998-2020. China CDC Wkly. 4: 242-248. https://doi.org/10.46234/ccdcw2022.058
  96. Jing-Cao P, Rong Y, Hao-Qiu W, Hai-Qing X, Wei Z, Xin-Fen Y, et al. 2008. Vibrio cholerae O139 multiple-drug resistance mediated by Yersinia pestis pIP1202-like conjugative plasmids. Antimicrob. Agents Chemother. 52: 3829-3836. https://doi.org/10.1128/AAC.00375-08
  97. Dang B, Mao D, Xu Y, Luo Y. 2017. Conjugative multi-resistant plasmids in Haihe river and their impacts on the abundance and spatial distribution of antibiotic resistance genes. Water Res. 111: 81-91. https://doi.org/10.1016/j.watres.2016.12.046
  98. Babakhani S, Oloomi M. 2018. Transposons: the agents of antibiotic resistance in bacteria. J. Basic Microbiol. 58: 905-917. https://doi.org/10.1002/jobm.201800204
  99. Siguier P, Gourbeyre E, Chandler M. 2014. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38: 865-891. https://doi.org/10.1111/1574-6976.12067
  100. Yuan Y, Li Y, Wang G, Li C, Chang Y F, Chen W, et al. 2019. blaNDM-5 carried by a hypervirulent Klebsiella pneumoniae with sequence type 29. Antimicrob. Resist. Infect. Control 8: 6-9. https://doi.org/10.1186/s13756-018-0455-5
  101. Zhu YQ, Zhao JY, Xu C, Zhao H, Jia N, Li YN. 2016. Identification of an NDM-5-producing Escherichia coli sequence Type 167 in a neonatal patient in China. Sci. Rep. 6: 1-8. https://doi.org/10.1038/s41598-016-0001-8
  102. Varani A, He S, Siguier P, Ross K, Chandler M. 2021. The IS6 family, a clinically important group of insertion sequences including IS26. Mob. DNA 12: 11.
  103. Chen H, Li Y, Sun W, Song L, Zuo R, Teng Y. 2020. Characterization and source identification of antibiotic resistance genes in the sediments of an interconnected river-lake system. Environ. Int. 137: 105538.
  104. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16: 161-168. https://doi.org/10.1016/S1473-3099(15)00424-7
  105. Snesrud E, McGann P, Chandler M. 2018. The birth and demise of the IS Apl1-mcr-1-IS-Apl1 composite transposon: the vehicle for transferable colistin resistance. mBio 9: e02381-17.
  106. Stalder T, Barraud O, Casellas M, Dagot C, Ploy M-C. 2012. Integron involvement in environmental spread of antibiotic resistance. Front. Microbiol. 3: 119.
  107. R GM. 2014. Integrons: past, present, and future. Microbiol. Mol. Biol. Rev. 78: 257-277. https://doi.org/10.1128/MMBR.00056-13
  108. Hubeny J, Korzeniewska E, Buta-Hubeny M, Zielinski W, Rolbiecki D, Harnisz M. 2022. Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. Sci. Total Environ. 822: 153437.
  109. Nguyen TN, Kasuga I, Liu M, Katayama H. 2019. Occurrence of antibiotic resistance genes as emerging contaminants in watersheds of Tama River and lake Kasumigaura in Japan. IOP Conf. Ser. Earth Environ. Sci. 266: 12003. https://doi.org/10.1088/1755-1315/266/1/012003
  110. Agramont J, Gutierrez-Cortez S, Joffre E, Sjoling A, Calderon Toledo C. 2020. Fecal pollution drives antibiotic resistance and class 1 integron abundance in aquatic environments of the bolivian andes impacted by mining and wastewater. Microorganism 8: 1122.
  111. Zheng W, Huyan J, Tian Z, Zhang Y, Wen X. 2020. Clinical class 1 integron-integrase gene - A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environ. Int. 135: 105372.
  112. Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Ku J. 2014. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9: 1269-1279. https://doi.org/10.1038/ismej.2014.226
  113. Singha P, Chanda DD, Maurya AP, Paul D, Chakravarty A, Bhattacharjee A. 2016. Distribution of class II integrons and their contribution to antibiotic resistance within Enterobacteriaceae family in India. Indian J. Med. Microbiol. 34: 303-307. https://doi.org/10.4103/0255-0857.188319
  114. Barraud O, Casellas M, Dagot C, Ploy M-C. 2013. An antibiotic-resistant class 3 integron in an Enterobacter cloacae isolate from hospital effluent. Clin. Microbiol. Infect. 19: E306-E308. https://doi.org/10.1111/1469-0691.12186
  115. Heberer T. 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 131: 5-17. https://doi.org/10.1016/S0378-4274(02)00041-3
  116. Kemper N. 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8: 1-13. https://doi.org/10.1016/j.ecolind.2007.06.002
  117. Environmental Chemicals, the Human Microbiome, and Health Risk. 2017. NASEM.
  118. Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sanchez-Melsio A, et al. 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 69: 234-242. https://doi.org/10.1016/j.watres.2014.11.021
  119. Hanna N, Purohit M, Diwan V, Chandran SP, Riggi E, Parashar V, et al. 2020. Monitoring of water quality, antibiotic residues, and antibiotic-resistant Escherichia coli in the Kshipra river in India over a 3-year period. Int. J. Environ. Res. Public Health 17: 7706.
  120. Zhang Q, Jia A, Wan Y, Liu H, Wang K, Peng H, et al. 2014. Occurrences of three classes of antibiotics in a natural river basin: association with antibiotic-resistant Escherichia coli. Environ. Sci. Technol. 48: 14317-14325. https://doi.org/10.1021/es503700j
  121. Lu J, Wang Y, Li J, Mao L, Nguyen SH, Duarte T, Guo J. 2018. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environ. Int. 121: 1217-1226. https://doi.org/10.1016/j.envint.2018.10.040
  122. Wang Y, Lu J, Mao L, Li J, Yuan Z, Bond PL, et al. 2019. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME J. 13: 509-522. https://doi.org/10.1038/s41396-018-0275-x
  123. Qiu Z, Yu Y, Chen Z, Jin M, Yang D, Zhao Z, et al. 2012. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl. Acad. Sci. USA 109: 4944-4949. https://doi.org/10.1073/pnas.1107254109
  124. Szivak I, Behra R, Sigg L. 2009. Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). J. Phycol. 45: 427-435. https://doi.org/10.1111/j.1529-8817.2009.00663.x
  125. Caitlin L Williams, Heather M Neu, Jeremy J Gilbreath, Sarah LJ Michel, Daniel V Zurawski, Scott Merrell. 2016. Copper resistance of the emerging pathogen Acinetobacter baumannii. Appl. Environ. Microbiol. 82: 6174-6188. https://doi.org/10.1128/AEM.01813-16
  126. Carrasco A, Armario P, Chamber MA, Palomares AJ, Caviedes A, Lo R. 2005. Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol. Biochem. 37: 1131-1140. https://doi.org/10.1016/j.soilbio.2004.11.015
  127. Berg J, Thorsen MK, Holm PE, Jensen J, Nybroe O, Brandt KK. 2010. Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay. Environ. Sci. Technol. 44: 8724-8728. https://doi.org/10.1021/es101798r
  128. Wilson LA, Rogers Van Katwyk S, Fafard P, Viens AM, Hoffman SJ. 2020. Lessons learned from COVID-19 for the post-antibiotic future. Global. Health 16: 94.
  129. Nieuwlaat R, Mbuagbaw L, Mertz D, Burrows LL, Bowdish DME, Moja L, et al. 2021. Coronavirus disease 2019 and antimicrobial resistance: parallel and interacting health emergencies. Clin. Infect. Dis. 72: 1657-1659. https://doi.org/10.1093/cid/ciaa773
  130. Ashiru-Oredope D, Kerr F, Hughes S, Urch J, Lanzman M, Yau T, et al. 2021. Assessing the impact of COVID-19 on antimicrobial stewardship activities/programs in the United Kingdom. Antibiotics 10: 110.
  131. Clancy CJ, Nguyen MH. 2020. Coronavirus disease 2019, superinfections, and antimicrobial development: what can we expect? Clin. Infect. Dis. 71: 2736-2743. https://doi.org/10.1093/cid/ciaa524
  132. Contou D, Claudinon A, Pajot O, Micaelo M, Longuet Flandre P, Dubert M, et al. 2020. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann. Intensive Care 10: 119.
  133. Tiri B, Sensi E, Marsiliani V, Cantarini M, Priante G, Vernelli C, et al. 2020. Antimicrobial stewardship program, COVID-19, and infection control: spread of carbapenem-resistant Klebsiella Pneumoniae colonization in ICU COVID-19 patients. What did not work? J. Clin. Med. 9: 2744
  134. Zhang L, Zhang C, Lian K, Ke D, Xie T, Liu C. 2021. River restoration changes distributions of antibiotics, antibiotic resistance genes, and microbial community. Sci. Total Environ. 788: 147873.
  135. Kuroda K, Li C, Dhangar K, Kumar M. 2021. Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. Sci. Total Environ. 776: 145740.
  136. Harbarth S, Kahlmeter G, Kluytmans J, Mendelson M, Hospital GS, Town C, Burkert. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO. 2017
  137. Fang T, Wang H, Cui Q, Rogers M, Dong P. 2018. Diversity of potential antibiotic-resistant bacterial pathogens and the effect of suspended particles on the spread of antibiotic resistance in urban recreational water. Water Res. 145: 541-551. https://doi.org/10.1016/j.watres.2018.08.042
  138. Zhao Z, Li C, Jiang L, Wu D, Shi H, Xiao G, Kang X. 2022. Occurrence and distribution of antibiotic resistant bacteria and genes in the Fuhe urban river and its driving mechanism. Sci. Total Environ. 825: 153950.
  139. Koumare Y, Babana AH, Bah A, Kassogue A, Dao S, Diallo K, Faradji F. 2022. Bacteria isolated from Niger River water in Bamako showed multi-resistance to antibiotics. MOJ Biol. Med. 7: 71-74. https://doi.org/10.15406/mojbm.2022.07.00168
  140. Wang L, Zhu M, Li Y, Zhao Z, Hu T. 2022. Deterministic assembly process dominates bacterial antibiotic resistome in wastewater effluents receiving river. Environ. Sci. Pollut. Res. Int. 29: 90207-90218. https://doi.org/10.1007/s11356-022-22096-8