DOI QR코드

DOI QR Code

FAO Penman-Monteith 기준증발산식 민감도 분석

Sensitivity analysis of the FAO Penman-Monteith reference evapotranspiration model

  • 임창수 (경기대학교 사회에너지시스템공학과)
  • Rim, Chang-Soo (Department of Civil and Energy System Engineering, Kyonggi University)
  • 투고 : 2023.02.08
  • 심사 : 2023.03.31
  • 발행 : 2023.04.30

초록

증발산량을 산정하는 것은 수자원 관리에서 매우 중요한 요소이고, 많은 연구자들에 의해서 FAO Penman-Monteith (FAO P-M) 식이 기준증발산량을 산정을 위해 적용되고 있다. 하지만 FAO P-M 식에는 다양한 입력 변수들이 적용되어서, 이들 입력변수들의 영향력을 파악하는 것은 필요하다. 따라서 본 연구에서는 우리나라 56개 연구지역을 대상으로 8개의 기상요소들(최고기온, 최저기온, 풍속, 상대습도, 일사량, 증기압부족, 순복사량, 지중열유동)과 FAO Penman-Monteith (FAO P-M) 기준증발산식의 에너지항과 공기동력항, 그리고 고도의 변화에 따른 FAO P-M 기준증발산량 산정에 미치는 영향을 분석하였다. 이를 위해 다른 변량들은 고정한 상황에서 각 특정 변량을 10% 증가시킴에 따른 기준증발산량의 변화를 평가하기 위해 상대 민감도분석을 실시하였다. 또한 5개 대표 지역을 선정하여 그 지역들에 대해서 월별 민감도분석을 실시하고자 군집분석을 이용하여 56개 연구지역을 5개로 분류하였다. 분석결과에 의하면 56개 연구지역에서 8개의 기상요소 중에서 순복사량이 가장 민감한 것으로 나타났고, 다음으로 상대습도, 일사량, 최고기온, 증기압부족, 풍속, 최저기온 순으로 나타났다. 지중열유동은 가장 덜 민감한 요소인 것으로 나타났다. 지표면 특성의 경우, 고도는 매우 낮은 양의 상대 민감도를 보였다. FAO P-M 기준증발산식의 에너지항과 공기동력항의 상대적 민감도는 에너지항이 0.707, 공기동력항이 0.293을 보여서 에너지항이 공기동력항보다 기준증발산량 산정에 기여도가 더 큰 것으로 나타났다. 월별 민감도분석에 의하면 기상 요소별 민감도는 계절적인 영향을 보이는 것으로 나타났고, 고도의 상대민감도는 지역 간 서로 다른 양상을 보였다. 따라서 FAO P-M 식 적용을 위해서는 입력변수의 지역적, 계절적 민감도 차이를 고려해야할 것으로 판단된다.

Estimating the evapotranspiration is very important factor for effective water resources management, and FAO Penman-Monteith (FAO P-M) model has been applied for reference evapotranspiration estimation by many researchers. However, because various input data are required for the application of FAO P-M model, understanding the effect of each input data on FAO P-M model is necessary. Therefore, in this study, for 56 study stations located in South Korea, the effects of 8 meteorological factors (maximum and minimum temperature, wind speed, relative humidity, solar radiation, vapor pressure deficit, net radiation, ground heat flux), energy and aerodynamic terms of FAO P-M model, and elevation on FAO P-M reference evapotranspiration (RET) estimation were analyzed. The relative sensitivity analysis was performed to determine how 10% increment of each specific independent variable affects a reference evapotranspiration under given set of condition that other independent variables are unchanged. Furthermore, to select the 5 representative stations and perform the monthly relative sensitivity analysis for those stations, 56 study stations were classified into 5 clusters using cluster analysis. The study results showed that net radiation was turned out to be the most sensitive factor in 8 meteorological factors for 56 study stations. The next most sensitive factor was relative humidity, solar radiation, maximum temperature, vapor pressure deficit and wind speed, followed by minimum temperature in order. Ground heat flux was the least sensitive factor. In case of ground surface condition, elevation showed very low positive relative sensitivity. Relativity sensitivities of energy and aerodynamic terms of FAO P-M model were 0.707 for energy term and 0.293 for aerodynamic term respectively, indicating that energy term was more contributable than aerodynamic term for reference evapotranspiration. The monthly relative sensitivities of meteorological factors showed the seasonal effects, and also the relative sensitivity of elevation showed different pattern each other among study stations. Therefore, for the application of FAO P-M model, the seasonal and regional sensitivity differences of each input variable should be considered.

키워드

참고문헌

  1. Allen, R.G., Peretira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, Rome.
  2. Allen, R.G., Smith, M., Perrier, A., and Periira, L.S. (1994). "An update for the definition of reference evapotranspiration." ICID Bulletin, Vol. 43, No. 2, pp. 1-34.
  3. Ambas, V.Th., and Batas, E. (2012). "Sensitivity analysis of different evapotranspiration methods using a new sensitivity coefficient." Global Nest Journal, Vol. 3, pp. 335-343.
  4. Bare, M. (2017). Sensitivity analysis of the Penman-Monteith equation for delta alfalfa. Master Thesis, California State University, Sacramento, CA, U.S.
  5. Burt, C.M., Mutziger, A.J., Allen, R.G., and Howell, T.A. (2002). Evaporation from irrigated agricultural land in California. Report No. 02-001, Irrigation and Research Training Center, CA, U.S., pp. 1-51.
  6. Chen, D., Gao, G., Xu, C.-Y., Guo, J., and Ren, G. (2005). "Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China." Climate Research, Vol. 28, pp. 123-132. https://doi.org/10.3354/cr028123
  7. Debnath, S., Adamala, S., and Raghuwanshi, N.S. (2015). "Sensitivity analysis FAO-56 Penman-Monteith method for different agroecological region of India." Environmental Processes, Vol. 2, pp. 689-704. https://doi.org/10.1007/s40710-015-0107-1
  8. Droogers, P., and Allen, R.G. (2002) "Estimating reference evapotranspiration under inaccurate data conditions." Irrigation and Drainage Systems, Vol. 16, pp. 33-45. https://doi.org/10.1023/A:1015508322413
  9. Estevez, J., Gavilan P., and Berengena, J. (2009). "Sensitivity analysis of a Penman-Monteith type equation to estimate reference evapotranspiration in southern Spain." Hydrological Processes, Vol. 23, pp. 3342-3353. https://doi.org/10.1002/hyp.7439
  10. Gao, Z., He, J., Dong, K., Bian X., and Li, X. (2016). "Sensitivity study of reference evapotranspiration during growing season in the West Liao River basin, China." Theoretical and Applied Climatology, Vol. 124, pp. 865-881. https://doi.org/10.1007/s00704-015-1453-7
  11. Gong, L., Xu, C.-Y., Chen, D., Halldin, S., and Chen Y.D. (2006). "Sensitivity of the Penman-Monteith reference evapotranspirtion to key climatic variables in the Changjiang (Yangtze River) basin." Journal of Hydrology, Vol. 329, pp. 620-629. https://doi.org/10.1016/j.jhydrol.2006.03.027
  12. Goyal, R.K. (2004). "Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan (India)." Agricultural Water Management, Vol. 69, pp. 1-11. https://doi.org/10.1016/j.agwat.2004.03.014
  13. Hou, L.-G., Zou, S.-B., Xiao, H.-J., and Yang, Y.-G. (2013). "Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis north-west China." Proceedings of 2010 International Conference on Combating Land Degradation in Agriclutural Areas (ICCLD'10), ICCLD, Zi'an city, China, Vol. 2, No. suppl. 1, S4.
  14. Howell, T.A., Evette, S.R., Schneider, A.D., Todd, R.W., and Tolk, J.A. (1998). Evapotranspiration of irrigated fescue grass in a semi-arid environment. Paper No. 982117, ASAE Meeting Presentation, MI, U.S., pp. 1-23.
  15. Hupet, F., and Vanclooster, M. (2001). "Effects of sampling frequency of meteorological variables on the estimation of reference evapotranspiration." Journal of Hydrology, Vol. 243, pp. 192-204. https://doi.org/10.1016/S0022-1694(00)00413-3
  16. Hur, S.-O., Jung, K.-H., Ha, S.-K., and Kim, J.-G. (2006). "Evaluation of meteorological elements used for reference evapotranspiration calculation of FAO Penman-Monteith Model." Korean Journal of Soil Fertilizer, Vol. 39, No. 5, pp. 274-279.
  17. Intergovernmental Panel on Climate Change (IPCC) (2001). Climate change: Working group 1, The scientific basis. Cambridge, UK.
  18. Irmak, S., Payero, J.O., Martin, D.L., Irmak, A., and Howell, T.A. (2006). "Sensitivity analyses and sensitivity coefficients of standardized daily ASCE-Penman-Monteith equation." Journal of Irrigation and Drainage, Engineering, Vol. 6, pp. 564-578. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:6(564)
  19. Jun, T.-H., Jung, I.-W., Lee, B.-J., and Bae, D.-H. (2008). "Sensibility analysis of evapotranspiration methods for climate change impact assessment." Proceedings of Korea Water Resources Association, pp. 1067-1071.
  20. Liang, L., Li, L., Zhang, L., Li, J., and Li, B. (2008) "Sensitivity of Penman-Monteith reference crop evapotranspiration in Tao's river basin of Northeastern China." Chinese Geographical Science, Vol. 18, pp. 340-347. https://doi.org/10.1007/s11769-008-0340-x
  21. Lim, H.-J., Kwon, H.-J., Bae, D.-H., and Kim, S.-J. (2006). "Analysis of hydrological impact using climate change scenarios and the CA-Markov technuque on Soyanggang-dam watershed." Journal of Korea Water Resources Association, Vol. 39, No. 5, pp. 453-466. https://doi.org/10.3741/JKWRA.2006.39.5.453
  22. Monteith, J.L. (1965). "Evaporation and environment." Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-234.
  23. Mosaedi, A., Ghabaei, M., Sadeghi, S.-H., Mooshakhian, Y., and Bannayon, M. (2016) "Sensitivity analysis of monthly reference crop evapotranspiration trends in Iran: A qualitative approach." Theoretical and Applied Climatology, Vol. 128, No. 3, pp. 857-873.
  24. Ndulue, E., and Ranjan R.S. (2021). "Performance of the FAO Penman-Monteith equation under limiting conditions and fourteen reference evapotranspiration models in southern Manitoba." Theoretical and Applied Climatology, Vol. 143, pp. 1285-1298. https://doi.org/10.1007/s00704-020-03505-9
  25. Ndulue, E., Onyekwelu, I, Okechukwu, M., Chinenye. A., and Emmanuel, E. (2021). "Sensitivity of FAO Penman-Monteith reference evapotranspiration (ETo) to climatic variables under different climate types in Nigeria." Journal of Water and Climate Change, Vol. 12, No. 3, pp. 858-878. https://doi.org/10.2166/wcc.2020.200
  26. Nidiaye, P.M., Bodian, A., Diop, L., and Djaman, K. (2017). "Sensitivity analysis of the Penman-Monteith reference evapotranspiration to climatic variables: Case of Burkina Faso." Journal of Water Resources and Protection, Vol. 9, pp. 1364-1376. https://doi.org/10.4236/jwarp.2017.912087
  27. Penman, H.L. (1948). "Natural evaporation from open water, bare soil, and grass." Proceedings of the Royal Society, London, Vol. A193, pp. 120-146.
  28. Sharifi, A., and Dinpashoh, Y. (2014). "Sensitivity analysis of the Penman-Monteith reference crop evapotranspiration to climatic variables in Iran." Water Resources Management, Vol. 28, No. 15, pp. 5465-5476. https://doi.org/10.1007/s11269-014-0813-x
  29. Tabari, H., and Talaee, P.H. (2014). "Sensitivity of evapotranspiration to climatic change in different climates." Global and Planetary Change, Vol. 115, pp. 16-23. https://doi.org/10.1016/j.gloplacha.2014.01.006
  30. Trajkovic, S. (2005). "Temperature-based approaches for estimating reference evapotranspiration." Journal of Irrigation and Drainage Engineering, Vol. 131, No. 4, pp. 316-323. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316)
  31. Yin, Y.H., Wu, S.H., and Dai, E.F. (2010). "Determining factors in potential evapotranspiration changes over China in the period 1971-2008." Chinese Science Bulletin, Vol. 55, No. 29, pp. 3329-3337. https://doi.org/10.1007/s11434-010-3289-y
  32. Yoon, P-R., and Choi, J.-Y. (2018). "Assessment of reference evapotranspiration equations for missing and estimated weather data." Journal of Korean Society of Agricultural Engineers, Vol. 60, No. 3, pp. 15-25.