DOI QR코드

DOI QR Code

TEMPORAL DECAY OF SOLUTIONS FOR A CHEMOTAXIS MODEL OF ANGIOGENESIS TYPE

  • Received : 2022.08.22
  • Accepted : 2023.03.21
  • Published : 2023.05.01

Abstract

This paper considers a parabolic-hyperbolic-hyperbolic type chemotaxis system in ℝd, d ≥ 3, describing tumor-induced angiogenesis. The global existence result and temporal decay estimate for a unique mild solution are established under the assumption that some Sobolev norms of initial data are sufficiently small.

Keywords

Acknowledgement

The authors would like to thank the referees for their valuable comments and suggestions.

References

  1. A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Bio. 60 (1998), 857-899.  https://doi.org/10.1006/bulm.1998.0042
  2. J. C. Bowersox and N. Sorgente, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42 (1982), 2547-2551. 
  3. M. Chae, K. Kang, and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations 39 (2014), no. 7, 1205-1235. https://doi.org/10.1080/03605302.2013.852224 
  4. L. Corrias, B. Perthame, and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Math. Acad. Sci. Paris 336 (2003), no. 2, 141-146. https://doi.org/10.1016/S1631-073X(02)00008-0 
  5. L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math. 72 (2004), 1-28. https://doi.org/10.1007/s00032-003-0026-x 
  6. J. Folkman and M. Klasgsburn, Angiogenic factors, Science 235 (1987), 442-447.  https://doi.org/10.1126/science.2432664
  7. A. Friedman and J. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl. 272 (2002), no. 1, 138-163. https://doi.org/10.1016/S0022-247X(02)00147-6 
  8. A. Kubo and T. Suzuki, Mathematical models of tumour angiogenesis, J. Comput. Appl. Math. 204 (2007), no. 1, 48-55. https://doi.org/10.1016/j.cam.2006.04.027 
  9. L. A. Liotta, C. N. Rao, and S. H. Barsky, Tumor invasion and the extracellular matrix, Lab. Invest. 49 (1983), 636-649. 
  10. P. Monaghan, M. J. Warburton, N. Perusinghe, and P. S. Rutland, Topographical arrangement of basement membrane proteins in lactating rat mammary gland: Comparison of the distribution of type IV collagen, laminin, fibronectin and Thy-1 at the ultrastructural level, Proc. Nat. Acad. Sci. 80 (1983), 3344-3348.  https://doi.org/10.1073/pnas.80.11.3344
  11. V. R. Muthukkaruppan, L. Kubai, and R. Auerbach, Tumor-induced neovascularization in the mouse eye, J. Natl. Cancer Inst. 69 (1982), 699-705. 
  12. B. Perthame and A. F. Vasseur, Regularization in Keller-Segel type systems and the De Giorgi method, Commun. Math. Sci. 10 (2012), no. 2, 463-476. https://doi.org/10.4310/CMS.2012.v10.n2.a2 
  13. S. L. Schor, A. M. Schor, and G. W. Brazill, The effects of fibronectin on the migration of human foreskin fibroblasts and Syrian hamster melanoma cells into three-dimensional gels of native collagen fibres, J. Cell Sci. 48 (1981), 301-314.  https://doi.org/10.1242/jcs.48.1.301
  14. Y. Sugiyama, Y. Tsutsui, and J. J. L. Velazquez, Global solutions to a chemotaxis system with non-diffusive memory, J. Math. Anal. Appl. 410 (2014), no. 2, 908-917. https://doi.org/10.1016/j.jmaa.2013.08.065 
  15. T. Suzuki and R. Takahashi, Global in time solution to a class of tumor growth systems, Adv. Math. Sci. Appl. 19 (2009), no. 2, 503-524.