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TEMPORAL DECAY OF SOLUTIONS FOR A CHEMOTAXIS
MODEL OF ANGIOGENESIS TYPE

JAEWOOK AHN AND MYEONGHYEON KIM

ABSTRACT. This paper considers a parabolic-hyperbolic-hyperbolic type
chemotaxis system in R%, d > 3, describing tumor-induced angiogenesis.
The global existence result and temporal decay estimate for a unique mild
solution are established under the assumption that some Sobolev norms
of initial data are sufficiently small.

1. Introduction

To facilitate angiogenesis, the tumor secrets TAF (tumor angiogenic factor),
which induces EC (endothelial-cells) to move towards the tumor (see [6,11]).
As EC migrate, an extracellular protein, so-called fibronectin, is produced and
its main function is the adhesion of the cells to the matrix (see [9,10]). It
is known that the movement of EC is regulated by the haptotactic effect of
fibronectin as well as the chemotactic effect of TAF (see [2,13]).

In this paper, we investigates a parabolic-hyperbolic-hyperbolic type chemo-
taxis system so-called the Anderson-Chaplain model [1] describing the tumor-
induced angiogenesis:

X
=An—-V .| ——nV -V Vf
¢ n ( Cn C) (KJTL ),

(1.1) fe=Bn—nf,

¢t = —nc
in R? x (0,T), d > 3, subject to the initial conditions
(12) n(x,O) :no(-’L’), f(l‘,O) :fO(‘r)a c(x,O) :CO('T)'

Here, x >0, Kk >0, 8 > 0 and v > 0 are given constants and the unknowns n
represents the EC density per unit area, f represents the fibronectin concen-
tration, and c¢ represents the TAF concentration. A closely related variant of
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(1.1) is the following angiogenesis model:
(1.3) ng=An—V-(nS()Ve), ¢ =-nc, R x(0,T),

where the fibronectin factor is ignored, i.e., f =0 and § = 0, and S is smooth.

In the one-dimensional setting, smooth solutions to (1.1) or (1.3) are known
to exist globally in time for large data [7,8,15]. In two-dimensional and higher-
dimensional settings, smooth solutions have been found to exist globally in time
only under a smallness assumption on the initial data, and large data global
existence results are available for weak solution concepts. Indeed, in the case
of d > 2, it was proved in [4] that if

07

1, cS’

then weak solutions (n,c) to (1.3) exist globally in time and satisfy n €
L>=(0,00; LY(RY)), ¢ € L>(0, 00; L>(R%)), and

¢
/ {1|V’I"(c)|2 +nlnn} +/ / n[|VInn|® + a|VY(c)’] <
e |2 o e
with Y'(c) = /S(c)/c. Later on, for d > 2 and finite p > max{1, 4 — 1},
Corrias-Perthame-Zaag [5] constructed global-in-time weak solutions to (1.3)
satisfying n € L>(0, 00; (L' N LP)(R%)) and ¢ € L>(0, 00; L>(R%)) under the
assumption, as a replacement of the condition (1.4), that L3 (R%)-norm of nyg is
sufficiently small. Perthame-Vasseur [12] also proved that the global solutions
of (1.3) constructed in [5] for d > 2 satisfy the temporal decay property,

(1.5) ()l @ay St t>0.

For the temporal decay property (1.5) of smooth solutions to (1.3) coupled
with fluid equations under the smallness condition on ||ng|| we refer to
Chae-Kang-Lee [3].

Since the linear counterpart of (1.3),, n; = An, with L'(R?) initial data has

L% (Rd)’

_d
(1.6) ()l oo gy S 72, >0,

one can expect that the system (1.3) also has (1.6) instead of (1.5) if the initial
data are sufficiently small in a certain norm to weaken the nonlinear effect.
Motivated by the above observation, the main objective of this paper is to
establish the existence of global solutions to either (1.1) or (1.3) in R¢, d > 3,
with the decay property (1.6). The previous decay result (1.5) was proved in
[12] based on De Giorgi’s technique and the scaling invariant property (see also
[3]), but it is unclear whether or not such a method can be applied to derive
(1.6). Instead, we use the method of successive approximation to construct a
mild solution of (1.1)—(1.2) satisfying (1.6). Here and throughout this paper,
we call n € C([0,7); L7 (R?)) with o € [1,00) and 7 € (0, 00] is a mild solution
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to (1.1)~(1.2) if

t
(1.7) n(t) = e"®ng — / TRV (7X nVe+ knV f)(s)ds,
0 1+c¢
where
(1.8) f(t)— g =(fo— g)eﬂ Jon)ds oty = coe Jo s,

Our main result reads as follows.

Theorem 1.1. Let d > 3 and % <g<d<r<p<oo. Assume that the
nonnegative functions ng, fo, and co satisfy

ng € (Ll N Lp)(Rd) and fo — é700 S (Wl’q n Wl’r)(Rd).
0
Then, there exists a constant £g = eo(d, p, ¢, 7, X, K, 3,7) > 0 such that if

0l Lraze ey + 1V o = Bllwranwrr ey + llcollwraqwrr@aey < €0,

then a unique global mild solution n € C([0,00); (L* N LP)(RY)) to (1.1)—(1.2)
ezists and with some M > 0,
¢
/ Vn(s)ds
0

In(#)]] Loo (may < Mt™%  for allt > 0.

+sup [|n(t) | L1 ey < M,
LanLr(Rd)  t>0

| In@asode +sup
0 t>0

Remark 1.2. In Theorem 1.1, fy — g, co € L®(R?) since WHT(R?) — L*°(RY).
Moreover, ffg and c in (1.8) are bounded in (L®NWHINWL7)(R?) uniformly

in time since [ [|n(t)|| o (raydt and sup, || fg Vn(s)ds|| Lanrr(ray are finite.

Remark 1.3. As in Anderson-Chaplain [1], we adopted S(c) = {3 as a chemo-
tactic function but it is not difficult to extend Theorem 1.1 to more general
S € C1(]0,00)). Moreover, Theorem 1.1 is also applicable to the system (1.3)
if fo =0 and § = 0. Thus, compared to (1.5), the decay rate of n is improved

togfordz&

Remark 1.4. We expect that by using more technical estimates, the initial
smallness condition required for the decay (1.6) can be relaxed to ||n0HL%(Rd) +
l|(cosvfo — B)ll Lo (ray < €. Since it is out of our scope, we left it as a future
work.

The outline of this paper is as follows. Section 2 is devoted to introducing
notations and useful lemmas. In Section 3, we present the proofs of Theo-
rem 1.1.
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2. Preliminaries

In this section, we collect some notations, definitions, and lemmas. Let us
first introduce basic notations.

(1) [l xry = llullx + llully-
(ii) g = h means that M,g < h < Mg for some positive constants M, and
My,. We denote by g < h if g < Mh for some positive constant M.
Next, we introduce the definition of the homogeneous Besov space Bf,,q. Let ¢
be a compactly supported function belongs to Schwartz class in R? such that

suppp C {1/2 <[] <2} and Y p(279¢) =1 for £eR\{0}.
jeS

We define ¢; for j = 0,%1,... by F¢;(§) = p(277), where F denotes the

Fourier transform. The homogeneous Besov space By , is the collection of
u € &' such that |lul| 5. < oo, where
P;q

1
g, = (3270 g5 ulld, )*, a< oo,
' JET

[[ul

. _ js . _
By =sw 2 gjxullL,, g =00
! JEZ
Next, we collect some lemmas which are crucial for proving Theorem 1.1.

Lemma 2.1. Assume thatd > 1. Let u € B;,q,

U € LP N Li(RY).
(i) Suppose 0 < p,q < 00, s € R with nonnegative integer z > 5. Then,

([

(ii) For 1 <p<d<q< oo,

oo t -
v,k [ "
/O H/o ¢ (T) T Loo(R4) ~ 0 H (T)”meLq(Rd,) T

(iif) For all1l < p < oo,

T t T
v/ DAY LU (1 detH 5/ U0 dr-
| v arat],, o S [ 10 saie

Proof. We skip the proof of Lemma 2.1 and refer [14, Lem. 2.1] for details. O

. dt\ 7
(-80S )" ) %

t BS .-

Lemma 2.2. Let d > 3, ffl <g<d<r<p<ooanduc (LN LP)(RY).
Then

00 t
tA TA
/0 [ ull oo raydt + sup H/O Ve udTH(Lqur(Rd)) Sl pinpe ey -
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Proof. From Lemma 2.1, we obtain

[e%e] t
et ul| 1 oo (paydt + su H/ Vv eTAudTH
/0 I ullzmmadt +sup]| | (LonLr (R))
S lull gz, + llell gz + llull s -
Then,
o (d_
lullgs S 572792 full s gy + 3226l gy, and
T <o i>1
g .
l[ullg;1 S 2T ey + Y27 ull ey for T=1, g,
j<0 j>1

where % + ll, = 1. Since ¢ and r are less than or equal to p, we deduce the
desired bound from the interpolation inequality. O

3. Proof of Theorem 1.1

In this section, we assume x = k = 1 for simplicity unless any confusion is
to be expected. A generic constant M > 0 may change from one to the other.
We use function spaces X; = X} N X7, Y; = Y,' NY,>® and Z;, where

t
1llx; = / 17(5) | o ety s,

/O ) VJ(T)CZT‘

||J||Yt1 = Ssup HJ(S)”Ll(Rd) )
0<s<t

[ 7]lx2 = sup

b
0<s<t LanL™(R?)

d
[Jllyee = sup s2 ()|l oo ga) -
0<s<t

and

[Tllz. = sup [[J(s)llwranwrrre)-
0<s<t

Note that Xo MY is a Banach space endowed with norm |||y +||-[ly,_ and
Zs is a Banach space endowed with norm ||-[| ;.

Proof of Theorem 1.1. We use the method of successive approximation. Let
€€ (0,1)

which will be specified later and we assume that

(3-1)  Mnollzrace@ay + 1vfo = Bllwranwir ey + lleollwranwr ey < €.

Define

(3.2) ni(t) := e“ny.
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From Lemma 2.2 and the heat kernel estimates, we observe that there exist
positive constants Mx and My such that

(3:3) In1llx. < Mx|Inollinre wa),

In1llye. < My [[noll 21 (ra)-

Thus, with some M, > 0,

(3.4) [n1llxnvee < Mellnollpiare ra)-

Let us define a closed convex subset S of the Banach space X, N Yy by
Si={J € (XocNY): [V]ls:= [Tl x_ +[lly, <2M.e}.

We note that if ny € S for some k& > 1, then

B5) A0 == (o= D Oty t) i o el

v
belong to Z,,. Indeed, we have

Vfi(t) = e Jo me(s)ds (Vfo —(vfo = B) /0 Vnk<s>ds) ,

¢
Vep(t) =e” J m(s)ds (Vco - co/ Vnk(s)ds> ,
0

and direct computations yield for [ = ¢, r that

p B S oo zay ds
3.6 H t)— — <H ——‘ 7 Jo Tk (81l oo (rd) ¢
CONNN VAR ] VR
,6‘ 2y M
< _F YM.e
<o M PO
S M0€a
BT VA
< e'ontan(S)”Loo(]Rd)dS
t
. (vaO”Ll(]Rd) + v fo *5”];@0(]1@.1) ’/0 Vng(s)ds Ll(Rd))
< 27 M.e (HVfO”Ll(Rd) + ||’Yf0 — ﬁ”LOO(]Rd) QM*g)
< Mg,
(3'8) ||Ck(t)HLl(Rd) < ||CO||LZ(R(1) efo“"k(s)”ff’c’(Rd)ds

< lleoll o (gay €

S M2€7

and

39 IVer®)ll L ey
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¢
‘/0 Vnk(s)ds’Ll(Rd)>

IN

k() oo ay s <

IV eoll i ray + llcoll oo (ay

IA

= (|1 oll gy + lleoll o gy 20ie)
S M3€a

where M;, + = 0,1,2, 3, are positive constants independent of € and ¢. With
such M;, we define a closed convex subset T of the Banach space Z,, as

T := {J € Zy - HJHZ,X, < 2(M0 + My + Ms + Mg)E}.

In view of (3.6)—(3.9), it is obvious that fj — % and cj belong to 7 provided
that ny € S. Now, we divide the remaining part of the proof into three steps.

Step 1) First, we prove that (ng, fi — g,ck) given by (3.2), (3.5), and
(3.10) N1 (t)
1

t
. tA (t—s)A
= e ng — e V-(n
0 /0 (k1+

. Ver +ngVie)(s)ds, k>1,
k

belongs to Sx7T x T for any k > 1 if € is sufficiently small. We use mathematical
induction. Note from (3.4) that ny € S. We now assume that

(3.11) Ny, €S for some m > 1
and show n,,+1 € S. By (3.6)—(3.9) and (3.11), we have
(3.12) fm — g,cm €T, and ¢, >0.

We abbreviate

1
1+cn,

so that

(3.13) Nyms1(t) = €ng + By (t) + Bam(t).

By Lemma 2.2, we see that

(3.14) Immi1llxee < Mx|nollpiare®ey + 1 Brmll xo + [1B2mllx o s

where My is a constant given in (3.3). Using Lemma 2.1, ﬁ < 1 and the
Hélder inequality, we estimate Xoo-norm of By ,, as

(315) [ Bumlx.
<M / 172V ()| e ety s
0

< MHHanL*(Rd)HLl(o,oo)HchmHLqﬂL"'(Rd)HLoo(o,oo)
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< Ml g €™ (1960l anzr ety + coll oy Iz )
Similarly, we can estimate X.,-norm of B3 ., as
(3.16) [ Ba.mllx.
< Ml €15 (19 follparrne ey + 1o = Bl gy lmmllxz, )
Combining (3.14)—(3.16), due to (3.1) and (3.11), we have
(3.17) [ms1llxo

< Mx|InollL1nre re)
+ M|[np || x el "X IVeollpanrr ma
+ Mm% el %o [|co | oo ey
+ M| x e 1% |V fo| a2 (re)
+ M|nm|% 1% 18 = 4 fol| oo (re)
< Mx|nollpinze ey + Mxe?,

where M¥ is a positive constant independent of m and e.
Next, we consider Yoo-norm of n,,41. Using (3.10)—(3.12) and Hélder’s in-
equality, we compute L'(R?)-norm of n,,,1 as

(3.18)  [[nm+1(t)ll 11 (ra)
< ||€tA”0||L1(Rd)
t 1
[ (=9 (I T (Ol oy V() ds
0

< HetAnOHLl(Rd)

t
+M/0 (t=5) "2 [ (s)]| IVem (e + IV fm(s)l Las )ds

_d_
LT (Rd)
tA K _1 1-3 P 11
< e nOHLl(Rd)""ME o (t—s) 2HnM(S)”Ll(Rd)HnM(3)||Loo(Rd)523 2ds

tA 1-3 z ¢ 11
< e nollLr ey + Melnmlly  nmlly o [ (t=5)"2s72ds
oo oo O
< ||etAn0||L1(Rd)+M52 for all ¢ >0,

where we used
t 1 1 1 1 1
/ (t—s) 25 2ds = / (I—=7)"27"2dr < 0.
0 0

Next, we compute L> (R?)-norm of n,, 1. Using (3.10) and Hblder’s inequality,
we compute

(3.19) [Mmt1 (E) )| oo Rty < Nl€"2n0]| poo (may + T2 (t) + I2(t),
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where
t

s 1
I(t) = / =92 - (i

+ ¢k

Ve, + nkvfk)(S)HLoo(]Rd)dS7

1
T3 o Vo T V) ()]l e rayds.

Using the heat kernel estimates, Holder’s inequality and (3.11)—(3.12), we com-
pute I as

(3.20) I,(t)

0
t

L) = [ 2V (g
2

% _1_4d
< [P =7 (I T o)y + a5 )

< / (t—5) "2 2 ()| o (IVem(s)llpaay + 1V Fin(5)] Lagey ) ds

La-T (R4)

)

3 _1_d 1-1 1 11
< e 705 ) o () ey o5

1 1 % 1
< Me||nmllys ? [7m / (t—s) 3 85 bds
3 < J
< Mszt*%.
We treat I as follows. If ¢ < 2, then using the heat kernel estimates, Holder’s
inequality and (3.11)—(3.12), we compute Iy as
(3.21) It

t
_1_d1
S[(t—S) 22 [ () o @y (IVem ()l - ey + IV Fn (9)l] Lr (re) ) s

2

t

SMEHanyO%o[ (t—s)_%_%%s_%ds

2

t

t
§M52t’%/ (t—s)" 2 %rds
2

< Mezt’%.

Otherwise, if ¢ > 2, then using the heat kernel estimates and 7 +1C <1, we
compute I, as

(3.22) Ir(t) < Ini(t) + In2(t),

where

t—1
In (1) =/ (t = s)" 220 ([[nmVem(s)l| La@ay + [nmV fn(s)| Laay ) ds,

[MES
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1 Vem ()l Lr ey + [1mV i (8) | Lr (ray) ds.

By Holder’s inequality and (3.11)—(3.12), we have that
(3.23) I (%)

t

2

t—1
< [ = E )y (IFem Oy + 15 (9 e s

t—1

< Me2t— % [sup/ (t—s)égéds]
t
2

t>0
<M 52t_%,
and similarly, we also compute that

(3.24) Ino(t)

¢
< Me*(t — 1)*% {sup/ (t— 3)*%*%%(13
>0 Ji—1
< M52t_%.
Combining (3.19)—(3.24), we obtain
(3.25) 741 (E) || oo Ry < HetAnOHLoo(Rd) + Me*% forallt> 0.
Thus, with (3.18), it follows that
(3.26) [7mt1lly,, < My |Inoll 1 gay + My-e?,

where My is a constant given in (3.3) and M > 0 is a constant independent
of m and e. Now, taking ¢ sufficiently small so that

e < M.

~ 2max{M%, M;}’
by (3.17) and (3.26), we have 1,41 € S. Then inductively we can deduce that
if (3.27) holds, then

(3.27)

(3.28) (nk,fk—gmk) eSxT xT forall keN.

Step 2) Next, we show that {(ng, fx — %, ¢k) }ren is a Cauchy sequence in

S x T x T for sufficiently small €. Let (3.27) hold and k¥ > 2. We note from
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(3.13) that
(3.29) (k41— 1) (t) = (Bik — Brg—1)(t) + (Bok — B2k—1)(1),

where

(B1,x — B1k—1)(t)

¢ 1 1
= 7/ e(tS)AV(nk Vcknk_1Vck_1>ds
0

14ck 1+ cp1
t

_ (t—s)A (Ck - Ck—l)

= — e V| (ng —np_ Ve np_1Vce

/0 <( F )T YR T o) (T 1)
1
_ —cCr_1) |d
+ nyg 11+Ck71V(ck Cr 1)) s,

and
(B2, — Bak—1)(t)

= — / e(t=9)Ay. <(nk —nk—1)V e + 1 V(fr — fk—l))ds'
0

We note also that

(ck = er1)(t) = coe™ fo M — e Jo e (),
(fi = fr)(t) = (fo - %Me*’Y Jam@ds — =yl mea (),

V(ex — ex1)(t) = Veg(e Jo (s — = Jomer(s)de)

t
— ¢ ((e Jo na(s)ds _ o~ 5 Nk—l(S)dS)/ Vnk(s)ds>
0
. t
—cpe” Jo nk—1(s)ds </ V(le - nk_l)(s)ds) ,
0

and

V(fi = fe=1)(t)
= Vfo(e™” Jomu(e)ds _ =7 fg ”k—l(s)ds)

t
_ (’on _ 6) <(e—7 fot nk(s)ds _ e~ f(;‘ nk.,l(s)ds)/ Vnk(s)ds)
0

t
— (vfo = B)e o remalo)ds (/ V(i — nkl)(s>ds> '
0
Since the mean value theorem yields
(3.30) e — eb| < emaxllalblY g — b for all a,b € R,
using (3.30), Holder’s inequality and (3.28), we compute

(3.31) llek — cr—1ll oo (0,005 Lo (R4))
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IA

o0
HCOHLOQ(W)emax{nnuugo,nnHuxgx,}/ s — 1ot oo ey s
0

IN

||COHLOQ(R(1) emax{anuxéov””k-l“xég}||nk _ nk—lnXéo'

Similarly, again by (3.30), Holder’s inequality and (3.28), we have for [ = ¢,r
that

(3:32)  [V(er — ck—1)llLo(0,00;t (R4Y)

o0
< ||VCO||L1(Rd)€maX{an”X%°"lnk71|lxé°]/ ([ — ”k—1||L°°(Rd)d5
0

oo
+ HCO||L°°(Rd)emw{”nk“xé°7”%71“}%"}/ Ik = k1]l oo rey ds|ne [l x2,
0

me—1llx1 [k — ng—1lx2,

+ lcoll oo (raye
< Ming — ng—1|x .
and
(3.33)  IIV(fr = fr—1)llLo0 (0,00; L1 (R4))

oo
< HVfO\\Lz(Rd>e7m“"{”"k”Xéo’”"k‘*l“xéo}/ Yk — 11| oo (rayds
0

oo
+ ”,ny _ ﬁHLw(Rd)e’Ymax{anHx}m1an—lfox,}/ fyan — nk—lHLw(Rd)dsnnk”X};
0

+ lrfo = Bll e o™ 158 Iy = niallxz
< Mlng —ng—1|lx.,
where M is a positive constant independent of € and k. Thus, using (3.29),
(3.31)—(3.33) and utilizing computations similar to (3.14)—(3.17), we can obtain
(3.34) k1 — nellxe < Mx"ellng — ne—1l[x.

where MY is a positive constant independent of ¢ and k. Moreover, treating
(3.29) similarly as in (3.18)—(3.26), again by (3.31)—(3.33), we have

(3.35) k41 — nllve, < My*ellne — ng—ls,

where My* is a positive constant independent of € and k. Now, choosing ¢

satisfying (3.27) and

1
3.36 e -
(3:36) = 300 + )
we can see from (3.34)—(3.35) that {ny}ren is a Cauchy sequence in S.
Moreover, analogues to (3.31), we can compute for [ = ¢,r that

(3.37) llek = ck—1ll Lo (0,00;Lt (RAY)
oo
< HCOHLZ(Rd) emax{”nkuxéo’”"’“luxéo}/ [k — ng—1 poo (rayds
0
< ||COHLl(Rd) emax{anHxéovl\nk_1\|xcl>o}||nk - nk—l”Xl ’
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and

(3.38)  [fx — fr—1llLo=(0,00;Lt (R4))

o0
< Nvfo = Bllpiqaye” ™ Umellxac lme—lixa b / nge — g1 | oo () s
0

mﬂx{l\nk\lxéoJ\Mﬂl\xéo}”nk — g1 lx
&%

< lvfo — BllLiraye
With (3.34)—(3.35) and e satisfying (3.27) and (3.36), we can deduce from
(3.32)—(3.33) and (3.37)—(3.38) that {fx — %}keN and {cg }ren are Cauchy se-
quences in T .

Step 3) Due to Step 1-Step 2, for (ng, fo,co) and € satisfying (3.1), (3.27)
and (3.36), (1.7)—(1.8) has a global solution

(3.39) (n,f—%,c)éSxTxT.

To show its uniqueness, we suppose that (n!, f! — g,cl) and (n?, f2 — g,CQ)
are two solutions of (1.7)—(1.8). By repeating computations similar to (3.34)—
(3.35), we can obtain

In? —n'lls < (MY + My*)e[n® —n'|ls

and thus, by (3.36), |[n? — n'|s = 0. Namely, n* = n?. Since n' = n?, it is
direct to see from (1.8) that (f!,c!) = (f?,¢?), which yields the uniqueness of
the solution.

Finally, we show n € C([0,00); (L* N LP)(R%)). Note that, by a simi-
lar argument as in (3.18), we have n € C([0,00); L}(R?)). To show n €
C(]0,00); LP(R%)), we let

1 k+1/1 1
—=1-(==2), k=1,2,...
L 2 (5-1) k-1

and show inductively that n € C([0,00); LP*(R%)) for all k = 1,...,m. Here,
m is uniquely chosen so that

1 c 1 1 + 1/1 1
pm PP 2\d 1))
Note that p% > %+ (35— }) and ng € LP*(R?). Using the heat kernel estimates
and %Jrc < 1, we compute

In ()] Lp1 (ray
t 1 _dn_ L
S Il + [ (¢ =920 (10Teo)llpao + 109 F6) 11 s
0

Applying Holder’s inequality to the rightmost term, after using (3.39), we ob-
serve that

t _1_dr_1
/0 (t—5) "= 20720 (|nVe(s) | 11 ey + IV F(5) | L2z )ds
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A

t 1_d_ 1 1
/0 (t = )T 305 () ey () e g
(IVe() e ey + IV F(5) | 1y )ds

1-1 1 1

t
_1l_dn_ 1 d
Il Il lellze + 105 = Al [ (¢ = 5744075005 Has
0

N

¢ _lod(_L
< (t—s) 272V " m'g ~+9ds.
0

Since two exponents in the last integral representation satisfy

Lod YL odr 1N tdo
2 2 ;) 2 2\d r ' r2 ’

3262~

we can deduce that n € C([0,00); LP*(R?)). Using this LP*(R?) bound of n
with ﬁ <1, (3.39), and the heat kernel estimates, we next compute

and

n(t) || L2 (ray

S ”nO”L”z(Rd)
t
+ [ =) IS e
0
S ”nOHL”?(Rd)

t
-1 41,1 1
b [ s AT n(5) s g (Vo) 1o+ 195 s
0

S [Inoll ez me)

t
+ [l oo (0,6,L01 Ry (llell zoo +17.f = Bll ze )/(t—s) 3-8 73 g,
0

SRR N PR Y R Y
2 2\r pr pep1/) 2 2\r 2\d r

>—1 forallk=1,2,...,

e o HINVIO e s

Since

it follows that n € C(]

0,00); L (]Rd)). Moreover, by repeating the similar
procedures, we have for k = 1,.

— 1 that

() || Lress (may

S ||”0HLPk+1(Rd)

t 1 d( +-L 1 1 )
+ Il Loe 0,600 way) (el 2 + [17f —6||zoo)/ (t—s) 2 Pk Pt1lds
0
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and thus, by inductive reasoning, n € C([0, 00); LP (R%)) follows. Now, we can
deduce n € C([0,00); LP(R%)) from the estimates

In(t) || L (me)

S ”nO”LP(Rd)
t
_1_d(1, 1 _1
+Hn||L°°(0,t;me(Rd))(HCHZOO+||7ffﬁllzoc)/(t*S) 22t ) ds,
0
where
1 d 1Jr 1 1 - 1 d 1+1 1 1
2 2\r pm D 2 2\r 2\d r
3 d
4 4y
> —1.

In summary, for e satisfying (3.1), (3.27) and (3.36), there exists a unique
global mild solution to (1.1)—(1.2) satisfying n € C([0, 00); (L' N LP)(R%)) and
(3.39). O
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