과제정보
This study was supported by the Yunnan Provincial Science and Technology Department (Nos. 2019FH001-051, 2019FH001-008, 2021530000242017) and MOE (2019-NYZD-25-9 and 2019J0574).
참고문헌
- Ahmed, W., Dai, Z., Liu, Q., Munir, S., Yang, J., Karunarathna, S. C., Li, S., Zhang, J., Ji, G. and Zhao, Z. 2022a. Microbial cross-talk: dissecting the core microbiota associated with fluecured tobacco (Nicotiana tabacum) plants under healthy and diseased state. Front. Microbiol. 13:845310.
- Ahmed, W., Dai, Z., Zhang, J., Li, S., Ahmed, A., Munir, S., Liu, Q., Tan, Y., Ji, G. and Zhao, Z. 2022b. Plant-microbe interaction: mining the impact of native Bacillus amyloliquefaciens WS-10 on tobacco bacterial wilt disease and rhizosphere microbial communities. Microbiol. Spectr. 10:e0147122.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Anajjar, B., Azelmat, S., Terta, M. and Ennaji, M. M. 2014. Evaluation of phytopathogenic effect of Pectobacterium carotovorum subsp. carotovorum isolated from symptomless potato tuber and soil. Curr. J. Appl. Sci. Technol. 4:67-78.
- Basim, H., Basim, E., BakI, D. and Turgut, A. 2019. Wet rot disease of banana (Musa Sp.) caused by Pectobacterium carotovorum subsp. carotovorum in Turkey. Can J. Plant Pathol. 41:174-187. https://doi.org/10.1080/07060661.2019.1577302
- Behera, S. S. and Ray, R. C. 2016. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int. J. Biol. Macromol. 92:942-956. https://doi.org/10.1016/j.ijbiomac.2016.07.098
- Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
- Cai, Q., Zhou, G., Ahmed, W., Cao, Y., Zhao, M., Li, Z. and Zhao, Z. 2021. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur. J. Plant Pathol. 160:265-276. https://doi.org/10.1007/s10658-021-02237-4
- Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N. and Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108(Suppl 1):4516-4522. https://doi.org/10.1073/pnas.1000080107
- Cariddi, C. and Sanzani, S. M. 2013. A severe outbreak of bacterial lettuce soft rot caused by Pectobacterium carotovorum subsp. carotovorum in Apulia (Italy). J. Plant Pathol. 95:441-446.
- Cui, M. and Li, C. 2009. Research progress on occurrence regularity and control technology of soft rot of Amorphophallus spp. China Plant Prot. 6:33-35 (in Chinese).
- Dong, C.-J., Wang, L.-L., Li, Q. and Shang, Q.-M. 2019. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 14:e0223847.
- Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998. https://doi.org/10.1038/nmeth.2604
- Florencio-Ortiz, V., Selles-Marchart, S., Zubcoff-Vallejo, J., Jander, G. and Casas, J. L. 2018. Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress. PLoS ONE 13:e0198093.
- Gallelli, A., Galli, M., De Simone, D., Zaccardelli, M. and Loreti, S. 2009. Phenotypic and genetic variability of Pectobacterium carotovorum isolated from artichoke in the sele valley. J. Plant Pathol. 91:757-761.
- Greening, C., Carere, C. R., Rushton-Green, R., Harold, L. K., Hards, K., Taylor, M. C., Morales, S. E., Stott, M. B. and Cook, G. M. 2015. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc. Natl. Acad. Sci. U. S. A. 112:10497-10502. https://doi.org/10.1073/pnas.1508385112
- Huang, K., Jiang, Q., Liu, L., Zhang, S., Liu, C., Chen, H., Ding, W. and Zhang, Y. 2020. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco rootknot nematodes. AMB Express 10:72.
- Ji, G.-H., Wei, L.-F., He, Y.-Q., Wu, Y.-P. and Bai, X.-H. 2008. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biol. Control 45:288-296. https://doi.org/10.1016/j.biocontrol.2008.01.004
- Kim, Y. C. and Anderson, A. J. 2018. Rhizosphere pseudomonads as probiotics improving plant health. Mol. Plant Pathol. 19:2349-2359. https://doi.org/10.1111/mpp.12693
- Megguer, C. A., Fugate, K. K., Lafta, A. M., Ferrareze, J. P., Deckard, E. L., Campbell, L. G., Lulai, E. C. and Finger, F. L. 2017. Glycolysis is dynamic and relates closely to respiration rate in stored sugarbeet roots. Front. Plant Sci. 8:861.
- Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663. https://doi.org/10.1111/1574-6976.12028
- Popovic, T., Jelusic, A., Markovic, S. and Ilicic, R. 2019. Characterization of Pectobacterium carotovorum subsp. carotovorum isolates from a recent outbreak on cabbage in Bosnia and Herzegovina. Pestic. Phytomed. (Belgrade) 34:211-222. https://doi.org/10.2298/PIF1904211P
- Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361. https://doi.org/10.1007/s11104-008-9568-6
- Schlatter, D., Fubuh, A., Xiao, K., Hernandez, D., Hobbie, S. and Kinkel, L. 2009. Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb. Ecol. 57:413-420. https://doi.org/10.1007/s00248-008-9433-4
- She, S., Niu, J., Zhang, C., Xiao, Y., Chen, W., Dai, L., Liu, X. and Yin, H. 2017. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch. Microbiol. 199:267-275. https://doi.org/10.1007/s00203-016-1301-x
- Siddiqui, I. A. and Shaukat, S. S. 2002. Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol. Fertil. Soils 36:260-268. https://doi.org/10.1007/s00374-002-0509-x
- Wang, G.-H., Liu, J.-J., Yu, Z.-H., Wang, X.-Z., Jin, J. and Liu, X.-B. 2016. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 32:14-20 (in Chinese).
- Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267. https://doi.org/10.1128/AEM.00062-07
- Wang, R., Zhang, H., Sun, L., Qi, G., Chen, S. and Zhao, X. 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 7:343.
- Wang, Y., Liu, L., Yang, J., Duan, Y., Luo, Y., Taherzadeh, M. J., Li, Y., Li, H., Awasthi, M. K. and Zhao, Z. 2020. The diversity of microbial community and function varied in response to different agricultural residues composting. Sci. Total Environ. 715:136983.
- Wei, H., Wang, L., Hassan, M. and Xie, B. 2018. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256:333-341. https://doi.org/10.1016/j.biortech.2018.02.050
- Wei, H., Yang, M., Ke, Y., Liu, J., Chen, Z., Zhao, J., Zhao, Y., Huang, F. and Yu, L. 2022. Comparative physiological and transcriptomic profiles reveal regulatory mechanisms of soft rot disease resistance in Amorphophallus spp. Physiol. Mol. Plant Pathol. 118:101807.
- Wu, X., Yang, M., Liu, J.-N., Chen, Z.-B., Wang, D.-K., Zhao, J.- R., Zhong, Y., Wu, D.-X. and Yu, L. 2018. Identification and evaluation of resistance of Amorphophallus spp. to Erwinia carotovora subsp. carotovora. Subtrop. Plant Sci. 47:176-180 (in Chinese).
- Wu, Z., Hao, Z., Sun, Y., Guo, L., Huang, L., Zeng, Y., Wang, Y., Yang, L. and Chen, B. 2016. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Appl. Soil Ecol. 107:99-107. https://doi.org/10.1016/j.apsoil.2016.05.017
- Xiaolong, C., Lingling, G., Xiaopeng, D., Yongfeng, Y., Jianwei, W., Zhan, Z., Yongzhan, C., Feiyan, H., Min, Y., Wenjie, T. and Lei, Y. 2022. Effects of Meloidogyne incognita on the fungal community in tobacco rhizosphere. Rev. Bras. Cienc. Solo. 46:e0210127.
- Xie, C.-H. and Yokota, A. 2006. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56:889-893. https://doi.org/10.1099/ijs.0.64056-0
- Xu, P., Wang, H., Qin, C., Li, Z., Lin, C., Liu, W. and Miao, W. 2021. Analysis of the taxonomy and pathogenic factors of Pectobacterium aroidearum L6 using whole-genome sequencing and comparative genomics. Front. Microbiol. 12:679102.
- Xue, Z., Huang, F., Liu, J., Ke, Y., Wei, H., Gao, P., Qi, Y. and Yu, L. 2022. A high trans-zeatin nucleoside concentration in corms may promote the multileaf growth of Amorphophallus muelleri. Front. Plant Sci. 13:964003.
- Yan, M., Chen, S., Huang, T., Li, B., Li, N., Liu, K., Zong, R., Miao, Y. and Huang, X. 2020. Community compositions of phytoplankton and eukaryotes during the mixing periods of a drinking water reservoir: dynamics and interactions. Int. J. Environ. Res. Public Health. 17:1128.
- Yang, M., Qi, Y., Liu, J., Wu, Z., Gao, P., Chen, Z., Huang, F. and Yu, L. 2022. Dynamic changes in the endophytic bacterial community during maturation of Amorphophallus muelleri seeds. Front. Microbiol. 13:996854.
- Zheng, Y., Wang, J., Zhao, W., Cai, X., Xu, Y., Chen, X., Yang, M., Huang, F., Yu, L. and He, Y. 2022. Effect of bacterial wilt on fungal community composition in rhizosphere soil of tobaccos in tropical Yunnan. Plant Pathol J. 38:203-211. https://doi.org/10.5423/PPJ.OA.03.2022.0035