DOI QR코드

DOI QR Code

Different Response Mechanisms of Rhizosphere Microbial Communities in Two Species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum Infection

  • Min Yang (College of Plant Protection, Yunnan Agricultural University) ;
  • Ying Qi (College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University) ;
  • Jiani Liu (College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University) ;
  • Penghua Gao (College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University) ;
  • Feiyan Huang (College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University) ;
  • Lei Yu (College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University) ;
  • Hairu Chen (College of Plant Protection, Yunnan Agricultural University)
  • 투고 : 2022.12.04
  • 심사 : 2023.02.03
  • 발행 : 2023.04.01

초록

Soft rot is a widespread, catastrophic disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) that severely damages the production of Amorphophallus spp. This study evaluated the rhizosphere bacterial and fungal communities in Pcc-infected and uninfected plants of two species of Amorphophallus, A. muelleri and A. konjac. Principal component analysis showed that the samples formed different clusters according to the Pcc infection status, indicating that Pcc infection can cause a large number of changes in the bacterial and fungal communities in the Amorphophallus spp. rhizosphere soil. However, the response mechanisms of A. muelleri and A. konjac are different. There was little difference in the overall microbial species composition among the four treatments, but the relative abundances of core microbiome members were significantly different. The relative abundances of Actinobacteria, Chloroflexi, Acidobacteria, Firmicutes, Bacillus, and Lysobacter were lower in infected A. konjac plants than in healthy plants; in contrast, those of infected A. muelleri plants were higher than those in healthy plants. For fungi, the relative abundances of Ascomycota and Fusarium in the rhizosphere of infected A. konjac plants were significantly higher than those of healthy plants, but those of infected A. muelleri plants were lower than those of healthy plants. The relative abundance of beneficial Penicillium fungi was lower in infected A. konjac plants than in healthy plants, and that of infected A. muelleri plants was higher than that of healthy plants. These findings can provide theoretical references for further functional research and utilization of Amorphophallus spp. rhizosphere microbial communities in the future.

키워드

과제정보

This study was supported by the Yunnan Provincial Science and Technology Department (Nos. 2019FH001-051, 2019FH001-008, 2021530000242017) and MOE (2019-NYZD-25-9 and 2019J0574).

참고문헌

  1. Ahmed, W., Dai, Z., Liu, Q., Munir, S., Yang, J., Karunarathna, S. C., Li, S., Zhang, J., Ji, G. and Zhao, Z. 2022a. Microbial cross-talk: dissecting the core microbiota associated with fluecured tobacco (Nicotiana tabacum) plants under healthy and diseased state. Front. Microbiol. 13:845310.
  2. Ahmed, W., Dai, Z., Zhang, J., Li, S., Ahmed, A., Munir, S., Liu, Q., Tan, Y., Ji, G. and Zhao, Z. 2022b. Plant-microbe interaction: mining the impact of native Bacillus amyloliquefaciens WS-10 on tobacco bacterial wilt disease and rhizosphere microbial communities. Microbiol. Spectr. 10:e0147122.
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  4. Anajjar, B., Azelmat, S., Terta, M. and Ennaji, M. M. 2014. Evaluation of phytopathogenic effect of Pectobacterium carotovorum subsp. carotovorum isolated from symptomless potato tuber and soil. Curr. J. Appl. Sci. Technol. 4:67-78.
  5. Basim, H., Basim, E., BakI, D. and Turgut, A. 2019. Wet rot disease of banana (Musa Sp.) caused by Pectobacterium carotovorum subsp. carotovorum in Turkey. Can J. Plant Pathol. 41:174-187. https://doi.org/10.1080/07060661.2019.1577302
  6. Behera, S. S. and Ray, R. C. 2016. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int. J. Biol. Macromol. 92:942-956. https://doi.org/10.1016/j.ijbiomac.2016.07.098
  7. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
  8. Cai, Q., Zhou, G., Ahmed, W., Cao, Y., Zhao, M., Li, Z. and Zhao, Z. 2021. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur. J. Plant Pathol. 160:265-276. https://doi.org/10.1007/s10658-021-02237-4
  9. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N. and Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108(Suppl 1):4516-4522. https://doi.org/10.1073/pnas.1000080107
  10. Cariddi, C. and Sanzani, S. M. 2013. A severe outbreak of bacterial lettuce soft rot caused by Pectobacterium carotovorum subsp. carotovorum in Apulia (Italy). J. Plant Pathol. 95:441-446.
  11. Cui, M. and Li, C. 2009. Research progress on occurrence regularity and control technology of soft rot of Amorphophallus spp. China Plant Prot. 6:33-35 (in Chinese).
  12. Dong, C.-J., Wang, L.-L., Li, Q. and Shang, Q.-M. 2019. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 14:e0223847.
  13. Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998. https://doi.org/10.1038/nmeth.2604
  14. Florencio-Ortiz, V., Selles-Marchart, S., Zubcoff-Vallejo, J., Jander, G. and Casas, J. L. 2018. Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress. PLoS ONE 13:e0198093.
  15. Gallelli, A., Galli, M., De Simone, D., Zaccardelli, M. and Loreti, S. 2009. Phenotypic and genetic variability of Pectobacterium carotovorum isolated from artichoke in the sele valley. J. Plant Pathol. 91:757-761.
  16. Greening, C., Carere, C. R., Rushton-Green, R., Harold, L. K., Hards, K., Taylor, M. C., Morales, S. E., Stott, M. B. and Cook, G. M. 2015. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc. Natl. Acad. Sci. U. S. A. 112:10497-10502. https://doi.org/10.1073/pnas.1508385112
  17. Huang, K., Jiang, Q., Liu, L., Zhang, S., Liu, C., Chen, H., Ding, W. and Zhang, Y. 2020. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco rootknot nematodes. AMB Express 10:72.
  18. Ji, G.-H., Wei, L.-F., He, Y.-Q., Wu, Y.-P. and Bai, X.-H. 2008. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biol. Control 45:288-296. https://doi.org/10.1016/j.biocontrol.2008.01.004
  19. Kim, Y. C. and Anderson, A. J. 2018. Rhizosphere pseudomonads as probiotics improving plant health. Mol. Plant Pathol. 19:2349-2359. https://doi.org/10.1111/mpp.12693
  20. Megguer, C. A., Fugate, K. K., Lafta, A. M., Ferrareze, J. P., Deckard, E. L., Campbell, L. G., Lulai, E. C. and Finger, F. L. 2017. Glycolysis is dynamic and relates closely to respiration rate in stored sugarbeet roots. Front. Plant Sci. 8:861.
  21. Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663. https://doi.org/10.1111/1574-6976.12028
  22. Popovic, T., Jelusic, A., Markovic, S. and Ilicic, R. 2019. Characterization of Pectobacterium carotovorum subsp. carotovorum isolates from a recent outbreak on cabbage in Bosnia and Herzegovina. Pestic. Phytomed. (Belgrade) 34:211-222. https://doi.org/10.2298/PIF1904211P
  23. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361. https://doi.org/10.1007/s11104-008-9568-6
  24. Schlatter, D., Fubuh, A., Xiao, K., Hernandez, D., Hobbie, S. and Kinkel, L. 2009. Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb. Ecol. 57:413-420. https://doi.org/10.1007/s00248-008-9433-4
  25. She, S., Niu, J., Zhang, C., Xiao, Y., Chen, W., Dai, L., Liu, X. and Yin, H. 2017. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch. Microbiol. 199:267-275. https://doi.org/10.1007/s00203-016-1301-x
  26. Siddiqui, I. A. and Shaukat, S. S. 2002. Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol. Fertil. Soils 36:260-268. https://doi.org/10.1007/s00374-002-0509-x
  27. Wang, G.-H., Liu, J.-J., Yu, Z.-H., Wang, X.-Z., Jin, J. and Liu, X.-B. 2016. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 32:14-20 (in Chinese).
  28. Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267. https://doi.org/10.1128/AEM.00062-07
  29. Wang, R., Zhang, H., Sun, L., Qi, G., Chen, S. and Zhao, X. 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 7:343.
  30. Wang, Y., Liu, L., Yang, J., Duan, Y., Luo, Y., Taherzadeh, M. J., Li, Y., Li, H., Awasthi, M. K. and Zhao, Z. 2020. The diversity of microbial community and function varied in response to different agricultural residues composting. Sci. Total Environ. 715:136983.
  31. Wei, H., Wang, L., Hassan, M. and Xie, B. 2018. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256:333-341. https://doi.org/10.1016/j.biortech.2018.02.050
  32. Wei, H., Yang, M., Ke, Y., Liu, J., Chen, Z., Zhao, J., Zhao, Y., Huang, F. and Yu, L. 2022. Comparative physiological and transcriptomic profiles reveal regulatory mechanisms of soft rot disease resistance in Amorphophallus spp. Physiol. Mol. Plant Pathol. 118:101807.
  33. Wu, X., Yang, M., Liu, J.-N., Chen, Z.-B., Wang, D.-K., Zhao, J.- R., Zhong, Y., Wu, D.-X. and Yu, L. 2018. Identification and evaluation of resistance of Amorphophallus spp. to Erwinia carotovora subsp. carotovora. Subtrop. Plant Sci. 47:176-180 (in Chinese).
  34. Wu, Z., Hao, Z., Sun, Y., Guo, L., Huang, L., Zeng, Y., Wang, Y., Yang, L. and Chen, B. 2016. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Appl. Soil Ecol. 107:99-107. https://doi.org/10.1016/j.apsoil.2016.05.017
  35. Xiaolong, C., Lingling, G., Xiaopeng, D., Yongfeng, Y., Jianwei, W., Zhan, Z., Yongzhan, C., Feiyan, H., Min, Y., Wenjie, T. and Lei, Y. 2022. Effects of Meloidogyne incognita on the fungal community in tobacco rhizosphere. Rev. Bras. Cienc. Solo. 46:e0210127.
  36. Xie, C.-H. and Yokota, A. 2006. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56:889-893. https://doi.org/10.1099/ijs.0.64056-0
  37. Xu, P., Wang, H., Qin, C., Li, Z., Lin, C., Liu, W. and Miao, W. 2021. Analysis of the taxonomy and pathogenic factors of Pectobacterium aroidearum L6 using whole-genome sequencing and comparative genomics. Front. Microbiol. 12:679102.
  38. Xue, Z., Huang, F., Liu, J., Ke, Y., Wei, H., Gao, P., Qi, Y. and Yu, L. 2022. A high trans-zeatin nucleoside concentration in corms may promote the multileaf growth of Amorphophallus muelleri. Front. Plant Sci. 13:964003.
  39. Yan, M., Chen, S., Huang, T., Li, B., Li, N., Liu, K., Zong, R., Miao, Y. and Huang, X. 2020. Community compositions of phytoplankton and eukaryotes during the mixing periods of a drinking water reservoir: dynamics and interactions. Int. J. Environ. Res. Public Health. 17:1128.
  40. Yang, M., Qi, Y., Liu, J., Wu, Z., Gao, P., Chen, Z., Huang, F. and Yu, L. 2022. Dynamic changes in the endophytic bacterial community during maturation of Amorphophallus muelleri seeds. Front. Microbiol. 13:996854.
  41. Zheng, Y., Wang, J., Zhao, W., Cai, X., Xu, Y., Chen, X., Yang, M., Huang, F., Yu, L. and He, Y. 2022. Effect of bacterial wilt on fungal community composition in rhizosphere soil of tobaccos in tropical Yunnan. Plant Pathol J. 38:203-211. https://doi.org/10.5423/PPJ.OA.03.2022.0035