DOI QR코드

DOI QR Code

Emulsification of O/W Emulsion Using Natural Mixed Emulsifiers : Optimization of Emulsion Stability Using Central Composite Design-Reponse Surface Methodology

천연 혼합유화제를 이용한 O/W 유화액의 제조 : 중심합성계획모델을 이용한 유화안정성 최적화

  • Seheum Hong (Department of Polymer Science and Engineering, Dankook University) ;
  • Cuiwei Chen (Department of Chemical Engineering, Dankook University) ;
  • Seung Bum Lee (Department of Chemical Engineering, Dankook University)
  • Received : 2023.04.10
  • Accepted : 2023.05.02
  • Published : 2023.06.10

Abstract

In this study, the O/W emulsification processes with the natural surfactants that were extracted from Medicago sativa L. and Sapindus saponaria L. as emulsifiers were optimized using the central composite design-response surface methodology (CCD-RSM). Herein, independent parameters were the amounts of mixed emulsifiers, the mixing ratio of natural emulsifiers (soapberry saponin/alfalfa saponin), and the emulsification time, whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and antioxidant activity (DPPH radical scanvenging activity). Through basic experiments, the ranges of operation variables for the amount of mixed emulsifiers, the mixing ratio of natural emulsifiers, and the emulsification time were 12~14 wt%, 30~70%, and 20~30 min, respectively. The optimum operation variables deduced from CCD-RSM for the amount of mixed emulsifiers, the mixing ratio of natural emulsifiers, and the emulsification time were 13.2 wt%, 44.2%, and 25.8 min, respectively. Under these optimal conditions, the expected values of the ESI, MDS, and antioxidant activity were 88.7%, 815.5 nm, and 38.7%, respectively. And, the measured values of the ESI, MDS, and antioxidant activity were 90.6%, 830.2 nm, and 39.6%, respectively, and the average experimental error for validating the accuracy was about 2.1%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process using CCD-RSM.

본 연구에서는 무환자와 알팔파로부터 추출한 천연계면활성제를 유화제로 사용하여 반응표면분석법 중 중심합성계획모델(CCD-RSM)을 이용한 O/W 유화 제조공정의 최적화를 수행하였다. 공정변수로는 혼합유화제 첨가량, 천연유화제 혼합비율(무환자 사포닌/알팔파 사포닌), 유화시간으로 설정하였고 반응치로는 유화액의 유화안정화지수, 평균입자크기, 항산화능(DPPH 라디칼 소거활성)으로 설정하였다. 기초실험을 통한 계량인자범위는 혼합유화제 첨가량(12~14 wt%), 천연유화제 혼합비율(30~70%), 유화시간(20~30 min)으로 설정하여 CCD-RSM을 이용하여 최적화한 결과, O/W 유화 제조공정의 최적조건으로 혼합유화제 첨가량은 13.2 wt%, 천연유화제 혼합비율은 44.2%, 유화시간은 25.8 min으로 나타났으며, 이 조건에서 예측된 반응치로서 유화액의 유화안정도지수(ESI)는 88.7%, 평균입자크기(MDS)는 815.5 nm, 항산화능은 38.7%으로 계산되었다. 이를 실험을 통해 확인한 결과 유화액의 ESI는 90.6%, MDS는 830.2 nm, 항산화능은 39.6%으로 나타났으며 평균오차율은 2.1%이었다. 따라서 CCD-RSM을 실제 유화 제조에 적용하여 만족스러운 O/W 유화제조 공정조건을 얻을 수 있었다.

Keywords

References

  1. D. Roy, R. R. Kommalapati, S. S. Mandava, K. T. Valsaraj, and W. D. Constant, Soil washing potential of a natural surfactant, Environ. Sci. Technol., 31, 670-675 (1997). https://doi.org/10.1021/es960181y
  2. S. De, S. Malik, A. Ghosh, R. Saha, and B. Saha, A review on natural surfactants, RSC Adv., 5, 65757-65767 (2015). https://doi.org/10.1039/C5RA11101C
  3. W. Bernhard, J. Mottaghian, A. Gebert, G. A. Rau, H. Von Der Hardt, and C. F. Poets, Commercial versus native surfactants: surface activity, molecular components, and the effect of calcium, Am. J. Resp. Crit. Care, 162, 1524-1533 (2000). https://doi.org/10.1164/ajrccm.162.4.9908104
  4. S. Hong and S. B. Lee, Extraction of Natural Emulsifier from Medicago sativa L. and Sapindus saponaria L.: Optimization using CCD-RSM, Appl. Chem. Eng., 33, 272-278 (2022).
  5. O. Tanaka, Y. Tamura, H. Masuda, and K. Mizutani, Application of saponins in foods and cosmetics: Saponins of Mohave yucca and Sapindus mukurossi, in: G. R. Walker and K. Yamasaki (eds.). Saponins used in Food and Agriculture, 1-11, Springer, NY, USA (1996).
  6. S. Balakrishnan, S. Varughese, and A. P. Deshpande, Micellar characterisation of saponin from Sapindus mukorossi, Tenside Surfact. Det., 43, 262-268 (2006).
  7. M. P. Wei, J. D. Qiu, L. Li, Y. F. Xie, H. Yu, Y. H. Guo, and W. R. Yao, Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: Extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction, J. Ethnopharmacol., 268, 113552 (2021).
  8. X. F. Dong, W. W. Gao, J. L. Su, J. M. Tong, and Q. Zhang, Effects of dietary polysavone (Alfalfa extract) and chlortetracycline supplementation on antioxidation and meat quality in broiler chickens, Br. Poult. Sci., 52, 302-309 (2011). https://doi.org/10.1080/00071668.2011.569008
  9. M. Ibrahim, M. N. Khaja, A. Aara, A. A. Khan, M. A. Habeeb, Y. P. Devi, and C. M. Habibullah, Hepatoprotective activity of Sapindus mukorossi and Rheum emodi extracts: in vitro and in vivo studies, World J. Gastroenterol., 14, 2566-2571 (2008). https://doi.org/10.3748/wjg.14.2566
  10. I. Berasategi, B. Barriuso, D. Ansorena, and I. Astiasaran, Stability of avocado oil during heating : Comparative study to olive oil, Food Chem., 132, 439-446 (2012). https://doi.org/10.1016/j.foodchem.2011.11.018
  11. J. G Ramirez-Gil, J. G. Morales, and A. T. Peterson, Potential geography and productivity of "Hass" avocado crops in Colombia estimated by ecological niche modeling, Sci. Horticu., 237, 287-295 (2018). https://doi.org/10.1016/j.scienta.2018.04.021
  12. S. Hong, J. Hou, and S. B. Lee, Optimization of O/W Emulsion with Natural Surfactant Extracted from Medicago sativa L. using CCD-RSM, Appl. Chem. Eng., 34, 137-143 (2023).
  13. B. Lindam and H. Wennersrom, Nonoonic micelles grow with increasing temperature, J. Phys. Chem., 95, 6053-6054 (1991). https://doi.org/10.1021/j100168a063
  14. B. Lindam, B. Medronho, and G. Karlstrom, Clouding of nonioic surfactants, Curr. Opin. Colloid Interface Sci., 22, 23-29 (2016). https://doi.org/10.1016/j.cocis.2016.01.005
  15. X. Chen, Y. Qi, C. Zhu, and Q. Wang, Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin, Int. J. Biol. Macromol., 131, 273-281 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.077
  16. D. J. Mcclements and S. M. Jafari, Improving emulsion formation, stability and performance using mixed emulsifiers: A review, Adv. Colloid Interface Sci., 251, 55-79 (2018). https://doi.org/10.1016/j.cis.2017.12.001
  17. N. Anton, P. Gayet, J. P. Benoit, and P. Saulnier, Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion, Int. J. Pharm., 334, 44-52 (2007).
  18. M. Homayoonfal, F. Khodaiyan, and M. Mousavi, Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability, Food Chem., 174, 649-659 (2015). https://doi.org/10.1016/j.foodchem.2014.10.117
  19. Yoo, B. H., Zuo, C. and Lee, S. B., Preparation of cosmeceuticals containing flos sophorae immaturus extracts: Optimization using Box-Behnken design model, Appl. Chem. Eng., 31, 404-410 (2020).
  20. M. Yolmeh, M. B. H. Najafi, and R. Farhoosh, Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM), Food Chem., 155, 319-324 (2014). https://doi.org/10.1016/j.foodchem.2014.01.059
  21. M. O. Saeed, K. Azizli, M. Isa, and J. K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8, 7-16 (2015).