DOI QR코드

DOI QR Code

Mechanical Properties and Density Profile of Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peels

  • Jung-Woo HWANG (Department of Wood Science & Technology, Jeonbuk National University) ;
  • Seung-Won OH (Department of Wood Science & Technology, Jeonbuk National University)
  • 투고 : 2022.11.02
  • 심사 : 2023.01.08
  • 발행 : 2023.03.25

초록

In this study, the boards were manufactured according to the mandarin peels addition rate using sawdust and mandarin orange peel. After that, the mechanical properties and density profile of ceramics prepared by conditions through resin impregnation process and carbonization process were investigated. The bending and compression strengths of ceramics tended to increase as the resin impregnation rate increased. When the resin impregnation rate was 70%, the highest values were 8.58 MPa and 14.77 MPa, respectively. Also, the mechanical properties of ceramics according to carbonization temperature showed the highest values at 1,200℃ for bending strength of 11.09 MPa and compression strength of 17.20 MPa. The bending strength and compression strength according to the mandarin peels addition rate showed the highest values at 8.62 MPa and 14.16 MPa, respectively, when the mandarin orange peel addition rate was 5%. The mechanical properties tended to decrease when the addition rate of mandarin orange was increased. The density profile of ceramics showed a similar tendency to the mechanical properties. It can be seen that the density distribution from the surface layer to the center layer is more uniform as the resin impregnation rate and carbonization temperature increase and the mandarin peels addition rate decreases.

키워드

참고문헌

  1. Bu, M.H. 2015. 26 Billion won in green light for a comprehensive marine waste. http://www.ihalla.com/read.php3?aid=1440946800511762073
  2. Byeon, H.S., Hwang, K.K., Lee, D.H., Hwang, J.W., Oh, S.W. 2010. Properties of woodceramics made from Broussonetia kazinoki Sieb: Effect of carbonization temperature. Journal of Agriculture & Life Science 44(4): 21-27.
  3. Hirose, T., Fujino, T., Fan, T., Endo, H., Okabe, T., Yoshimura, M. 2002. Effect of carbonization temperature on the structural changes of woodceramics impregnated with liquefied wood. Carbon 40(5): 761-765. https://doi.org/10.1016/S0008-6223(01)00197-X
  4. Hwang, J.W., Oh, S.W. 2017. Physical properties of ceramics manufactured from a boards mixed with sawdust and mandarin peels. Journal of the Korean Wood Science and Technology 45(3): 335-342.
  5. Hwang, J.W., Oh, S.W. 2019. Change of surface temperature and far-infrared emissivity in ceramics manufactured from a board mixed with sawdust and mandarin peel. Journal of the Korean Wood Science and Technology 47(1): 66-79. https://doi.org/10.5658/WOOD.2019.47.1.66
  6. Hwang, J.W., Oh, S.W. 2020a. Properties of board manufactured from sawdust, rice husk and charcoal. Journal of the Korean Wood Science and Technology 48(1): 61-75. https://doi.org/10.5658/WOOD.2020.48.1.61
  7. Hwang, J.W., Oh, S.W. 2020b. Mechanical performances of boards made from carbonized rice husk and sawdust: The effect of resin and sawdust addition ratio. Journal of the Korean Wood Science and Technology 48(5): 696-709. https://doi.org/10.5658/WOOD.2020.48.5.696
  8. Hwang, J.W., Oh, S.W. 2021. Bending strength of board manufactured from sawdust, rice husk and charcoal. Journal of the Korean Wood Science and Technology 49(4): 315-327. https://doi.org/10.5658/WOOD.2021.49.4.315
  9. Hwang, J.W., Oh, S.W. 2022. Formaldehyde deodorization effect and far-infrared emission characteristics of ceramics prepared with sawdust, risk husk, and charcoal: Effect of material mixing ratio. Journal of the Korean Wood Science and Technology 50(2): 104-112. https://doi.org/10.5658/WOOD.2022.50.2.104
  10. Hwang, J.W., Park, H.J., Oh, S.W. 2021. Effect of resin impregnation ratio on the properties of ceramics made from Miscanthus sinensis var. purpurascens particle boards. Journal of the Korean Wood Science and Technology 49(4): 360-370. https://doi.org/10.5658/WOOD.2021.49.4.360
  11. Iizuka, H., Masami, F., Okabe, T., Saito, K. 1999. Mechanical properties of woodceramics: A porous carbon material. Journal of Porous Materials 6: 175-184. https://doi.org/10.1023/A:1009691626946
  12. Iswanto, A.H., Hakim, A.R., Azhar, I., Wirjosentono, B., Prabuningrum, D.S. 2020. The physical, mechanical, and sound absorption properties of sandwich particleboard (SPb). Journal of the Korean Wood Science and Technology 48(1): 32-40. https://doi.org/10.5658/WOOD.2020.48.1.32
  13. Jamaludin, M.A., Bahari, S.A., Zakaria, M.N., Saipolbahri, N.S. 2020. Influence of rice straw, bagasse, and their combination on the properties of binderless particleboard. Journal of the Korean Wood Science and Technology 48(1): 22-31. https://doi.org/10.5658/WOOD.2020.48.1.22
  14. Jeju Special Self-Governing Province Citrus Marketing & Shipping Association [JCMSA]. 2020. Analysis of citrus distribution processing. http://www.citrus.or.kr/board/view.php?btable=bbs&bno=257&p=1&cate=0
  15. Lee, H.H., Han, K.S. 1998. Studies on optimum mixing ratio for rice hull wood particle composite board. Journal of the Korea Furniture Society 9(1): 59-64.
  16. Lee, P.W., Yoon, H.U. 1994. The properties of sawdust board in using MDI (methylene diphenyl diisocyanate) resin(I)-On the specific gravity, resin additive content and mat moisture content. Journal of the Korea Furniture Society 5(2): 51-61.
  17. Oh, S.W. 2002. Properties of sawdust board made from thinned logs (I): Effect of pressure and press time. Journal of Korea Forestry Energy 21(2): 10-16.
  18. Oh, S.W. 2003. Physical and mechanical properties of sawdust board made of thinning logs (II)-The effect of density and additive quantity of powder phenolic resin. Journal of the Korean Wood Science and Technology 31(3): 17-23.
  19. Oh, S.W. 2004. Development of Manufacturing Technique for Heating Boards of Functional Woodceramics from Thinned Logs. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea.
  20. Oh, S.W. 2014. Properties of sawdust-rice husk mixed ceramic according to the rice husk mixing ratios. Journal of the Korean Wood Science and Technology 42(4): 420-427. https://doi.org/10.5658/WOOD.2014.42.4.420
  21. Oh, S.W. 2016. Electrical properties and gar-infrared ray emission of ceramics manufactured with sawdust and rice husk. Journal of the Korean Wood Science and Technology 44(1): 106-112. https://doi.org/10.5658/WOOD.2016.44.1.106
  22. Oh, S.W., Byeon, H.S. 2006. Far-infrared ray emission and electrical properties of woodceramics manufactured with thinned logs. Forest Products Journal 56(7-8): 29-32.
  23. Okabe, T., Saito, K. 1995. Development of woodceramics. Transactions of the Material Research Society of Japan 18: 681-684. https://doi.org/10.1016/B978-1-4832-8381-4.50162-1
  24. Piao, J.J. 2004. Physical and mechanical properties of ceramics from a board mixed with sawdust and rice husk. M.S. Thesis, Jeonbuk National University, Korea.
  25. Prabuningrum, D.S., Massijaya, M.Y., Hadi, Y.S., Abdillah, I.B. 2020. Physical-mechanical properties of laminated board made from oil palm trunk (Elaeis guineensis Jacq.) waste with various lamina compositions and densifications. Journal of the Korean Wood Science and Technology 48(2): 196-205. https://doi.org/10.5658/WOOD.2020.48.2.196
  26. Seo, J.S. 1987. A study on the physical and mechanical properties of sawdust board combined with polypropylene chip and oriented thread. Ph.D. Thesis, Seoul National University, Korea.
  27. Setyayunita, T., Widyorini, R., Marsoem, S.N., Irawati, D. 2022. Effect of different conditions of sodium chloride treatment on the characteristics of kenaf fiber-epoxy composite board. Journal of the Korean Wood Science and Technology 50(2): 93-103. https://doi.org/10.5658/WOOD.2022.50.2.93
  28. Walker, J.C.F. 1993. Primary Wood Processing: Principles and Practice. Chapman & Hall, London, UK.
  29. Wibowo, E.S., Lubis, M.A.R., Park, B.D. 2021. Simultaneous improvement of formaldehyde emission and adhesion of medium-density fiberboard bonded with low-molar ratio urea-formaldehyde resins modified with nanoclay. Journal of the Korean Wood Science and Technology 49(5): 453-461. https://doi.org/10.5658/WOOD.2021.49.5.453