DOI QR코드

DOI QR Code

Cobalt(II) chloride hexahydrate와 결정성 셀룰로오스를 출발물질로 사용한 산화코발트(Co3O4·CoO) 초미세입자의 합성

Preparation of cobalt oxide(Co3O4·CoO) ultra fine particles using cobalt(II) chloride hexahydrate and crystalline cellulose as a starting materials

  • 김수종 (한라대학교 신소재화학공학과)
  • Soo-Jong Kim (Dept. of Advanced Materials & Chemical Engineering, Halla University)
  • 투고 : 2023.05.01
  • 심사 : 2023.05.15
  • 발행 : 2023.05.31

초록

CoCl2·6H2O 수용액을 결정성셀룰로오스에 함침시켜 건조한 후, 하소, 소성을 통하여 산화코발트(Co3O4·CoO) 초미세입자를 합성하였다. 합성된 코발트 산화물 입자의 결정구조 및 표면구조를 주사전자현미경(SEM)과 X-선회절분석(XRD)으로 조사하였다. CoCl2·6H2O 수용액을 함침시키는 매개체로 사용한 결정성셀룰로오스(crystalline cellulose)는 470℃ 정도에서 열분해 되었고, Co3O4 결정상은 350℃에서 생성되기 시작하였다. Co3O4 결정상은 500℃까지 유지되었으며, 500℃ 이상의 온도에서는 CoO 결정상으로 변화하는 것을 알 수 있었다. 열처리 온도가 증가함에 따라 산화코발트 입자의 크기가 커지는 현상이 나타났으며, 900℃ 이상의 온도에서는 입자간 용융이 일어나는 것이 관찰되었다. 하소온도 700℃ 이하의 온도에서 입자크기 2-10㎛의 Co3O4와 CoO의 초미세입자가 생성되는 것을 확인하였다.

Cobalt oxide (Co3O4·CoO) ultra fine particles were synthesized by liquid phase precursor method. cobalt(II) chloride hexahydrate (CoCl2·6H2O) was as a starting material. A plant-derived crystalline cellulose was used as impregnating materials. A impregnated precursor was calcined at a temperature of 350 to 900℃ to obtain cobalt oxide particles having a particle size of 1 to 10㎛. The crystallization process and morphology according to the calcination temperature were examined, and the properties of the synthesized powder were evaluated using SEM and XRD. It was confirmed that a crystal phase of Co3O4 began to form around 350℃ and crystal growth occurred up to 900℃. At a temperature above 500℃, the Co3O4 crystal was changed to another crystal phase CoO.

키워드

참고문헌

  1. A. Diallo, A. C. Beye, T. B. Doyle, E. S. Park and M. Maaza, "Green synthesis of Co3O4 nanoparticles via Aspalathus linearis : Physical properties," Green Chemistry Letters and Reviews, Vol. 11, No. 3-4, pp. 30-36, October, 2015. https://doi:10.1080/17518253.2015.1082646
  2. C. Li, S. Tong, J. T. Lin, K. Y. Andrew and Y. F. Lin, "Electrospun Co3O4 nanofiber as an efficient heterogeneous catalyst for activating peroxymonosulfate in water," Journal of the Taiwan Institute of Chemical Engineers, Vol. 106, pp. 110-117, January, 2020. https://doi.org/10.1016/j.jtice.2019.10.010
  3. C. R. Dhas, R. Venkatesh, R. Sivakumar, T. Dhandayuthapani, B. Subramanian, C. Sanjeeviraja and A. M. E. Raj, "Electrochromic performance of chromium-doped Co3O4 nanocrystalline thin films prepared by nebulizer spray technique," Journal of Alloys and Compounds, Vol. 784, pp. 49-59, May, 2019. https://doi.org/10.1016/j.materresbull.2018.03.025
  4. M. W. Khan, J. Yao, K. Zhang, X. Zuo, Q. Yang, H. Tang, K. M. UrRehman, H. Zhang, G. Li, S. Jin, and M. Wu, "Engineering N-reduced graphene oxide wrapped Co3O4@f-MWCNT hybrid for enhance performance dye-sensitized solar cells," Journal of Electroanalytical Chemistry, Vol. 844, pp. 142-154, July, 2019.https://doi:10.1016/j.jelechem.2019.05.008
  5. Y. Liu, L. Xie, M. Luo, S.Jian, B. Peng and L. Deng, "The synthesis and characterization of Al/Co3O4 magnetic composite pigments with low infrared emissivity and low lightness", Infrared Physics & Technology, Vol. 83, pp. 88-93, June, 2017. https://doi.org/10.1016/j.infrared.2017.04.014
  6. I. Shaheen, K. S. Ahmad, C. Zequine, R. K. Gupta, A. G. Thomas and M. A. Malik. "Modified sol-gel synthesis of Co3O4 nanoparticles using organic template for electrochemical energy storage," Energy, Vol. 218, No. 119502, March, 2021. https://doi/10.1016/j.energy.2020.119502
  7. Y. Kang, Y. H. Zhang, Q. Shi, H. Shi, D. Xue and F. N. Shi, "Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries," Journal of Colloid and Interface Science, Vol. 585, pp. 705-715, March, 2021. https://doi.org/10.1016/j.jcis.2020.10.050
  8. S.-N. Masoud, M. Noshin, and D. Fatemeh. "Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate," Journal of Physics and Chemistry of Solids, Vol. 70, No. 5, pp. 847-852, May, 2009. https://doi:10.1016/j.jpcs.2009.04.006
  9. M. Rashad, M. Rusing, G. Berth, K. Lischka and A. Pawlis, "CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy," Journal of Nanomaterials, Vol. 2013, No. 714853, July, 2013. https://doi.org/10.1155/2013/714853
  10. J. Grybos, C. Hudy, A. Gryczynska, W. Piskorz, and Z. Sojka, "Hydrothermal Synthesis of Euhedral Co3O4 Nanocrystals via Nutrient-Assisted Topotactic Transformation of the Layered Co(OH)2 Precursor under Anoxic Conditions: Insights into Intricate Routes Leading to Spinel Phase Development and Shape Perfection," Crystal Growth Design, Vol. 20, No. 12, pp. 7771-7787, November, 2020. https://doi.org/10.1021/acs.cgd.0c01031
  11. R. A. E. Acedera, G. Gupta, M. Mamlouk and M. D. L. Balela. "Solution combustion synthesis of porous Co3O4 nanoparticles as oxygen evolution reaction (OER) electrocatalysts in alkaline medium," Journal of Alloys and Compounds, Vol. 836, No. 154919, September, 2020. https://doi.org/10.1016/j.jallcom.2020.154919
  12. D. Y. Kim, S. H. Ju, H. Y. Koo, S. K. Hong and Y. C. Kang, "Synthesis of nanosized Co3O4 particles by spray pyrolysis," Journal of Alloys and Compounds, Vol. 417, No. 1-2, pp. 254-258, June, 2006. https://doi.org/10.1016/j.jallcom.2005.09.013
  13. N. M. Deraz, "The Comparative Jurisprudence of Catalysts Preparation Methods I Precipitation and Impregnation Methods," Journal of Industrial and Environmental Chemistry, Vol. 2, No. 1, pp. 19-21, March, 2018.
  14. C. Tian, "Internal influences of hydrolysis conditions on rutile TiO2 pigment production via short sulfate process," Materials Research Bulletin, Vol. 103, No. pp. 83-88, July, 2018. https://doi.org/10.1016/j.materresbull.2018.03.025
  15. S. J. Kim and K. Ogino, "Synthesis of TiO2 nanoparticles using titaniumtetraisopropoxide and starch," Journal of Ceramic Processing Research, Vol. 20, No. 6, pp. 665-669, September, 2019. https://doi.org/10.36410/jcpr.2019.20.6.665
  16. S. J. Kim and H. S. Kwon, "Synthesis and Photo Luminescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor using Polymer Matrix," Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 20, No. 8, pp. 871-879, January, 2007 .https://doi:10.4313/ JKEM.2007.20.8.671
  17. S. J. Kim, "Synthesis and characterization of cobalt oxide nanoparticles by using industrial pulp as impregnated precursor," Journal of Ceramic Processing Research, Vol. 22, No. 1, pp. 74-78, February, 2021. https://doi :10.36410/jcpr.2021.22.1.74