DOI QR코드

DOI QR Code

Effects of Relative Humidity and Fiber Properties on the Moisture Permeability of Multilayer Fabric Systems

환경 및 섬유 특성이 멀티레이어 직물시스템의 투습성에 미치는 영향

  • Suhyun Lee (Dept. of Fashion Design, Jeonbok National University) ;
  • Sohyun Park (Division of Human Ecology, Korea National Open Uvniversity)
  • 이수현 (전북대학교 의류학과) ;
  • 박소현 (한국방송통신대학교 생활과학부)
  • Received : 2023.01.20
  • Accepted : 2023.02.13
  • Published : 2023.02.28

Abstract

This study aimed to determine the effects of relative humidity and fiber properties on the moisture permeability of multilayer systems by measuring water vapor transmission in the overlapping condition of various fabrics. The results confirmed that the property of the fabric in contact with the humid environment affects the moisture permeability. If the layer facing the humid environment is hydrophobic and the layer facing the dry environment is superhydrophobic, water vapor transmission increases by up to 17.8% compared to the opposite conditions. Comparing the correction values of the water vapor transmission reflecting the thickness of the specimen under the multilayer condition showed that permeability was higher when the hydrophilic or hydrophobic layer was facing the humid environment. The opposite was true from the "push-pull" effect of absorption mechanism. In the case of moisture permeability, the more hydrophilic the surface facing the humid environment, the more permeable that water vapor diffuses and passes through. It was concluded that the "pull-push" effect, in which water vapor diffuses widely through the hydrophilic facing a humid environment and then passes through the hydrophobic layer, contributes to the improvement of permeability. Permeability differed according to the multilayer overlapping condition. When the relative humidity was high, the "pull-push" effect was insignificant. This is caused by water droplets absorption after the partial migration of water due to condensation. These results suggest that the overlapping conditions and properties of fabrics should vary depending on heavy sweating or not.

Keywords

References

  1. American Society for Testing and Materials, (2010). E96-80 Standard Test Methods for Water Vapor Transmission of Materials, West Conshohocken: ASTM International
  2. Babar, A. A., Miao, D., Ali, N., Zhao, J., Wang, X., Yu, J., & Ding, B. (2018). Breathable and colorful cellulose acetate-based nanofibrous membranes for directional moisture transport. ACS Applied Materials & Interfaces, 10(26), 22866-22875. doi:10.1021/acsami.8b07393
  3. Chang, I., Bae, J., Lim, J., Bae, H., Kim, J., Cho, H. (2019). human surface temperature and thermal radiation signature depending on clothing evaporative resistance. Journal of the KIMST the Spring and Fall Conference 1746-1747.
  4. Cubric, I. S., Skenderi, Z., & Havenith, G. (2013). Impact of raw material, yarn and fabric parameters, and finishing on water vapor resistance. Textile Research Journal, 83(12), 1215-1228. doi:10.1177/0040517512471745
  5. Dong, Y., Kong, J., Mu, C., Zhao, C., Thomas, N. L., & Lu, X. (2015). Materials design towards sport textiles with low-friction and moisture-wicking dual functions. Materials & Design, 88, 82-87. doi:10.1016/j.matdes.2015.08.107
  6. Gibson, P. W. (1993). Factors influencing steady-state heat and water vapor transfer measurements for clothing materials. Textile Research Journal, 63(12), 749-764. doi:10.1177/004051759306301208
  7. Jahid, M. A., Hu, J., Wong, K., Wu, Y., Zhu, Y., Sheng Luo, H. H., & Zhongmin, D. (2018). Fabric coated with shape memory polyurethane and its properties. Polymers, 10(6), 681. doi:10.3390/polym10060681
  8. Ju, J., Shi, Z., Deng, N., Liang, Y., Kang, W., & Cheng, B. (2017). Designing waterproof breathable material with moisture unidirectional transport characteristics based on a TPU/TBAC tree-like and TPU nanofiber double-layer membrane fabricated by electrospinning. RSC advances, 7(51), 32155-32163. doi:10.1039/C7RA04843B
  9. Lim, H. S., Park, S. H., Koo, S. H., Kwark, Y. J., Thomas, E. L., Jeong, Y., & Cho, J. H. (2010). Superamphiphilic janus fabric. Langmuir, 26(24), 19159-19162. doi:10.1021/la103829c
  10. Liu, Y., Xin, J. H., & Choi, C. H. (2012). Cotton fabrics with singlefaced superhydrophobicity. Langmuir, 28(50), 17426-17434. doi:10.1021/la303714h
  11. Miao, D., Huang, Z., Wang, X., Yu, J., & Ding, B. (2018). Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small, 14(32), 1801527. doi:10.1002/smll.201801527
  12. Park, S., Kim, J., & Park, C. H. (2015). Superhydrophobic textiles - Review of theoretical definitions, fabrication and functional evaluation. Journal of Engineered Fibers and Fabrics, 10(4), doi:10.1177/1558925015010004
  13. Supuren, G., Oglakcioglu, N., Ozdil, N., & Marmarali, A. (2011). Moisture management and thermal absorptivity properties of double-face knitted fabrics. Textile Research Journal, 81(13), 1320-1330. doi:10.1177/0040517511402122
  14. Yoon, B., & Lee, S. (2011). Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics. Fibers and Polymers, 12, 57-64. doi:10.1007/s12221-011-0057-9
  15. Xing, L., Zhou, Q., Chen, G., Sun, G., & Xing, T. (2022). Recent developments in preparation, properties, and applications of superhydrophobic textiles. Textile Research Journal, 92(19-20). doi:10.1177/00405175221097716