DOI QR코드

DOI QR Code

Characteristic of Injection According to CO2 Phases Using Surfactants

계면활성제를 활용한 이산화탄소 상태에 따른 주입특성 평가

  • Seokgu Gang (Department of Civil Engineering, Chungbuk National University) ;
  • Jongwon Jung (Department of Civil Engineering, Chungbuk National University)
  • Received : 2023.03.08
  • Accepted : 2023.04.13
  • Published : 2023.06.01

Abstract

The engineering industry heavily relies on fossil fuels such as coal and petroleum to generate energy through combustion. However, this process emits carbon dioxide into the atmosphere, leading to global warming. To mitigate this issue, researchers have explored various methods to reduce carbon dioxide emissions, one of which is carbon dioxide underground storage technology. This innovative technology involves capturing carbon dioxide from industrial plants and injecting it into the saturated ground layer beneath the earth's surface, storing it securely underground. Despite its potential benefits, carbon dioxide underground storage efficiency needs improvement to optimize storage in a limited space. To address this challenge, our research team has focused on improving storage efficiency by utilizing surfactants. Furthermore, we evaluated how different carbon dioxide states, including gaseous, liquid, and supercritical, impact storage efficiency based on their respective pressures and temperatures within the underground reservoir. Our findings indicate that using surfactants and optimizing the injection rate can effectively enhance storage efficiency across all carbon dioxide states. This research will pave the way for more efficient carbon dioxide underground storage, contributing to mitigating the environmental impact of fossil fuels on the planet.

석탄 및 석유와 같은 전통적인 화석 연료는 연소 시 발생하는 열을 통해 에너지를 공급한다. 이러한 과정에서 대기 중에 이산화탄소를 배출하고 지구 온난화를 유발한다. 이산화탄소 저감을 위해 많은 연구들이 수행되고 있다. 이러한 방안 중 하나로, 이산화탄소 지중 저장 기술이 관심을 받고 있다. 이산화탄소 지중 저장은 플랜트 등에서 발생하는 이산화탄소를 포집하여 덮개암 하부 포화지반층에 이산화탄소를 주입하여 저장하는 방법을 일컫는다. 하지만, 제한된 공간에 더 많은 양의 이산화탄소 저장을 위해서는 저장 효율의 향상이 필요하다. 따라서, 본 연구에서는 계면활성제를 활용하여 이산화탄소 지중 저장의 효율을 향상하고자 한다. 또한, 지중저장소의 위치에 따라 압력 및 온도가 상이하기 때문에 이산화탄소는 기체, 액체 및 초임계 상태로 존재가능하다. 따라서, 이산화탄소 상태에 따른 저장 효율 특성을 평가하였다. 그 결과, 주입속도 및 계면활성제의 활용은 저장 효율의 향상을 기대할 수 있고, 그 효과는 기체, 액체 및 초임계 상태 이산화탄소에 발휘되는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 충북대학교 국립대학육성사업(2022) 지원을 받아 작성되었으며, 이에 깊은 감사를 드립니다.

References

  1. Cao, S. C., Dai, S. and Jung, J. (2016), Supercritical CO2 and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies, International Journal of Greenhouse Gas Control, 44, 104~114. https://doi.org/10.1016/j.ijggc.2015.11.026
  2. Chang, C., Kneafsey, T. J., Tokunaga, T. K., Wan, J. and Nakagawa, S. (2021), Impacts of pore network-scale wettability heterogeneity on immiscible fluid displacement: a micromodel study, Water Resources Research, 57(9).
  3. Finley, R. J., Frailey, S. M., Leetaru, H. E., Senel, O., Coueslan, M. L. and Scott, M. (2013), Early operational experience at a one-million tonne CCS demonstration project, Decatur, Illinois, USA. Energy Procedia, 37, 6149~6155. https://doi.org/10.1016/j.egypro.2013.06.544
  4. Gang, S. and Jung, J. (2022), Increase of CO2 injection ratio using surfactants based on the micromodel experiment, Journal of the Korean Geo-Environmental Society, 23(12), 55~61.
  5. Global CCS Institute (GCCSI) (2015), What is CCS?, Melbourne, Australia.
  6. Government of the Republic of Korea, Korea's 2050 Carbon Neutral Strategy for the Relization of a Sustainable Green Society 2020. URL: https://www. gihoo. or. kr/netzero/download/ LEDS_REPORT.pdf.
  7. Gwon, L. G. (2016), Review of CO2 storage projects and driving strategy of CO2 storage program in Korea, KEPCO journal on electric power and energy, 2(2), 167~185. https://doi.org/10.18770/KEPCO.2016.02.02.167
  8. Ha, M. and Jung, J. (2019), Study of kaolin particle migration and clogging using a micromodel, Journal of the Korean Geotechnical Society, 35(4), 37~42.
  9. Iglauer, S., Wulling, W., Pentland, C. H., Al-Mansoori, S. K. and Blunt, M. J. (2011), Capillary-trapping capacity of sandstones and sandpacks, Spe Journal, 16(04), 778~783. https://doi.org/10.2118/120960-PA
  10. Intergovernmental Panel on Climate Change (2005), Carbon dioxide capture and storage, Cambridge, UK and New York, NY, USA, pp. 442.
  11. Jackson, R. B., Friedlingstein, P., Le Quere, C., Abernethy, S., Andrew, R. M., Canadell, J. G. and Peters, G. P. (2022), Global fossil carbon emissions rebound near pre-COVID-19 levels, Environmental Research Letters, 17(3), 031001.
  12. Jafari, M. and Jung, J. (2017), Direct measurement of static and dynamic contact angles using a random micromodel considering geological CO2 sequestration, Sustainability, 9(12), 2352.
  13. Jafari, M. and Jung, J. (2019), Salinity effect on micro-scale contact angles using a 2D micromodel for geological carbon dioxide sequestration, Journal of Petroleum Science and Engineering, 178, 152~161. https://doi.org/10.1016/j.petrol.2019.03.033
  14. Kang, K., Huh, C. and Kang, S. G. (2015), A numerical study on the CO2 leakage through the fault during offshore carbon sequestration, Journal of the Korean Society for Marine Environment & Energy, 18(2), 94~101. https://doi.org/10.7846/JKOSMEE.2015.18.2.94
  15. Kim, S. and Santamarina, J. C. (2014), Engineered CO2 injection: The use of surfactants for enhanced sweep efficiency, International Journal of Greenhouse Gas Control, 20, 324~332. https://doi.org/10.1016/j.ijggc.2013.11.018
  16. Lenormand, R. (1990), Liquids in porous media, Journal of Physics: Condensed Matter, 2(S), SA79.
  17. Metz, B., Davidson, O., De Coninck, H. C., Loos, M. and Meyer, L. (2005), IPCC special report on carbon dioxide capture and storage, Cambridge: Cambridge University Press.
  18. Park, G., Kim, S. O. and Wang, S. (2021), The effect of the surfactant on the migration and distribution of immiscible fluids in pore network, Economic and Environmental Geology, 54(1), 105~115. https://doi.org/10.9719/EEG.2021.54.1.105
  19. Ryou, J. E. and Jung, J. (2022), Characteristics of biopolymer guar gum solution injection for eco-friendly ground reinforcement, Journal of Korean Hazard and Mitigation, 22(1), 201~207. https://doi.org/10.9798/KOSHAM.2022.22.1.201
  20. Ryou, J. E. and Jung, J. (2022), Penetration behavior of biopolymer aqueous solutions considering rheological properties, Geomechanics and Engineering, 29(3), 259~267.
  21. Tsouris, Costas, Douglas S. Aaron and Kent A. Williams (2010), Is carbon capture and storage really needed?, 4042~4045.
  22. Xie, X. and Economides, M. J. (2009, March), The impact of carbon geological sequestration, Society of Petroleum Engineers, n SPE Americas E&P Environmental and Safety Conference. OnePetro.