DOI QR코드

DOI QR Code

WASP8 모형의 하천 미세플라스틱 모의 적용성 검토

Applicability of the WASP8 in simulating river microplastic concentration

  • 김경민 (서울과학기술대학교 환경공학과) ;
  • 박태진 (국립환경과학원 물환경연구부 물환경공학연구과) ;
  • 정한석 (서울과학기술대학교 환경공학과)
  • Kim, Kyungmin (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Park, Taejin (Water Environmental Engineering Research Division, Water Environmental Research Department, National Institute of Environmental Research) ;
  • Jeong, Hanseok (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 투고 : 2022.10.09
  • 심사 : 2023.04.28
  • 발행 : 2023.05.31

초록

미세플라스틱 분석에는 많은 비용과 인력, 그리고 긴 분석시간이 필요하기 때문에 하천에서의 연속적 미세플라스틱 관측에는 한계가 있다. 이와 같은 한계는 일반적으로 모형의 활용을 통해 보완될 수 있으나, 미세플라스틱의 거동 모의를 위한 모형 연구는 상당히 제한적으로 수행되었다. 따라서, 본 연구에서는 하천 수질 오염원의 거동을 이해하고 예측하는 데 많이 활용되는 물리식 기반 동적 수치모형인 Water Quality Analysis Simulation Program (WASP)의 미세플라스틱 오염예측에의 적용성을 검토하였다. 이를 위해, 안양천 대상 미세플라스틱 실측자료와 WASP8의 생화학적 산소요구량(BOD)과 부유물질(SS) 상태변수를 미세플라스틱 대리인자로 이용하여 안양천의 미세플라스틱 농도를 모의하였다. 모의결과, SS를 이용한 미세플라스틱 모의가 BOD를 이용한 모의보다 미세플라스틱 농도 모의에 더 좋은 성능을 나타냈다. 이는 상태변수로 이용한 각 수질인자의 특성에 기인한 것으로 생물화학적 지표인 BOD는 생물화학적으로 매우 안정된 미세플라스틱 모의에 대리인자로 사용하기에 적합하지 않은 것으로 판단된다. 반면, 미세플라스틱과 물리적 거동이 유사한 SS의 경우 미세플라스틱의 농도변화 추세를 잘 반영하였다. 향후, 보다 엄밀한 모형을 통한 미세플라스틱 오염 예측을 위해서는 미세플라스틱 재현성 평가를 위한 다양한 환경조건에서의 기초적인 미세플라스틱 조사 연구가 요구되며, 미세플라스틱 입력자료의 단위문제가 해결되어야 한다.

Monitoring river microplastics is a challenging task since it is a time-consuming and high-cost process. The use of a physical model to have a better understanding of river microplastics' behaviors can complement the challenging monitoring process. However, there have been very limited studies on modeling river microplastics. In this study, therefore, we evaluated the applicability of one commonly used river water quality model, i.e., the Water Quality Analysis Simulation Program (WASP), in simulating the microplastic concentration in the river environment. We simulated the microplastic concentration in the Anyangcheon stream using the WASP's biochemical oxygen demand (BOD) and suspended solid (SS) variables as possible surrogate variables for the microplastics. Simulation analyses indicate that the SS state variable performs better than the BOD state variable to mimic the observed concentrations of microplastics. This is because of the characteristics of each water quality parameter; the BOD variable, a biochemical indicator, is inappropriate for modeling the behaviors of microplastics, which have generally constant biochemical features. In contrast, the SS variable, which has similar physical behaviors, followed the observed patterns of the microplastic concentrations well. To build a more advanced and accurate model for simulating the microplastic concentration, comprehensive and long-term monitoring studies of the river microplastics under different environmental conditions are needed, and the unit of microplastic concentration should be carefully addressed before its modeling application.

키워드

과제정보

본 연구는 환경부 녹생융합기술인재양성특성화대학원사업의 지원을 받아 수행된 연구입니다. 이에 감사드립니다.

참고문헌

  1. Buwono, R., Risjani, Y., and Soegianto, A. (2021). "Distribution of microplastic in relation to water quality parameters in the Brantas River, East Java, Indonesia." Environmental Technology & Innovation, Vol. 24, pp. 172-178.
  2. Carroll, R.W.H., Warwick, J.J., Heim, K.J., Bonzongo, J.C., Miller, J.R., and Lyons, W.B. (2000). "Simulation of mercury transport and fate in the Carson River, Nevada." Ecological Modelling, Vol. 125, pp. 255-278. https://doi.org/10.1016/S0304-3800(99)00186-6
  3. Chen, C., Lung, W., Li, S., and Lin, C. (2012). "Technical challenges with BOD/DO modeling of rivers in Taiwan." Journal of Hydro-Environment Research, Vol. 6, No. 1, pp. 3-8. https://doi.org/10.1016/j.jher.2011.08.001
  4. Cozar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A.T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., Fernandez-de-Puelles, M.L., and Carlos, M.D. (2014). "Plastic debris in the open ocean." Proceedings of the National Academy of Sciences, Vol. 111, No. 28, pp. 10239-10244. https://doi.org/10.1073/pnas.1314705111
  5. Daily, J., and Hoffman, M.J. (2020). "Modeling the three-dimensional transport and distribution of multiple microplastic polymer types in Lake Erie." Marine Pollution Bulletin, Vol. 154, 111024.
  6. Donigan, A.S.Jr. (2000). Lecture #19. Calibration and verification issues. HSPF Training Workshop Handbook and CD, Slide #L19-22, U.S. EPA, Washington D.C., U.S.
  7. Estahbanati, S., and Fahrenfeld, N.L. (2016). "Influence of wastewater treatment plant discharges on microplastic concentrations in surface water." Chemosphere, Vol. 162, pp. 277-284. https://doi.org/10.1016/j.chemosphere.2016.07.083
  8. Kataoka, T., Nihei, Y., Kudou, K., and Hinata, H. (2019). "Assessment of the sources and inflow processes of microplastics in the river environments of Japan." Environmental Pollution, Vol. 244, pp. 958-965. https://doi.org/10.1016/j.envpol.2018.10.111
  9. Kay, P., Hiscoe, R., Moberlay, I., Bajic, L., and McKenna, N. (2018). "Wastewater treatment plants as a source of microplastics in river catchments." Environmental Science and Pollution Research, Vol. 25, pp. 20264-20267. https://doi.org/10.1007/s11356-018-2070-7
  10. Khatmullina, L., and Isachenko, I. (2017). "Settling velocity of microplastic particles of regular shapes." Marine Pollution Bulletin, Vol. 114, pp. 871-880. https://doi.org/10.1016/j.marpolbul.2016.11.024
  11. Klein, S., Worch, E., and Knepper, T.P. (2015). "Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany." Environmental Science & Technology, Vol. 49, No. 10, pp. 6070-6076. https://doi.org/10.1021/acs.est.5b00492
  12. Korea Meteorological Administration (KMA) (2015). Korea, accessed 29 September 2022,
  13. Kumar, R., Sharma, P., Verma, A., Jha, P.K., Singh, P., Gupta, P.K., Chandra, R and Prasad, P.V.V. (2021). "Effect of physical characteristics and hydrodynamic conditions on transport and deposition of microplastics in riverine ecosystem." Water, Vol. 13, No. 19, pp. 2710-2730. https://doi.org/10.3390/w13192710
  14. Mason, S.A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink, P., Papazissimos, D., and Rogers, D.L. (2016). "Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent." Environmental Pollution, Vol. 218, pp. 1045-1054. https://doi.org/10.1016/j.envpol.2016.08.056
  15. Ministry of Environment (ME) (2009). Korea, accessed 29 September 2022,
  16. Ministry of Land, Infrastructure and Transport (MOLIT) (2015). The basic river maintenance plan for Anyangcheon. Publication No. 11-1613168-000050-01, pp. 54-131.
  17. Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P. (2015). "Hydrologic and water quality models: Performance measures and evaluation criteria." Transactions of the ASABE, Vol. 58, pp. 1763-1785. https://doi.org/10.13031/trans.58.10715
  18. Nizzetto, L., Bussi, G., Futter, M.N., Butterfielda, D., and Whitehead, P.G. (2016). "A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments." Environmental Science: Processes & Impacts, Vol. 18, No. 8, pp. 1050-1059. https://doi.org/10.1039/C6EM00206D
  19. Park, J.Y., Park, G.A., and Kim, S.J. (2013). "Assessment of future climate change impact on water quality of Chungju Lake, South Korea, Using WASP coupled with SWAT." Journal of the American Water Resources Association, Vol. 49, pp. 1225-1238. https://doi.org/10.1111/jawr.12085
  20. Park, T., Lee, S., Lee, M., Lee, J., Lee, S., and Zoh, K. (2019). "Occurrence of microplastics in the Han River and riverine fish in South Korea." Science of the Total Environment, Vol. 708, No. 15, 134535.
  21. Sarkar, D.J., Sarkar, S.D., Das, B.K., Manna, R.K., Behera, B.K., and Samanta, S. (2019). "Spatial distribution of meso and microplastics in the sediments of river Ganga at eastern India." Science of the Total Environment, Vol. 694, No. 1, 133712.
  22. Seoul Metropolitan Government (SMG) (2016). Korea, accessed 29 September 2022, .
  23. Singh, N., Mondal, A., Bagri, A., Tiwari, E., Khandelwal, N., Monikh, F.A., and Darbha, G.K. (2021). "Characteristics and spatial distribution of microplastics in the lower Ganga River water and sediment." Marine Pollution Bulletin, Vol. 163, 111960.
  24. Waldschlager, K., Bruckner, M.Z.M., Almroth, B.C., Hackney, C.R., Adyel, T.M., Alimi, O.S., Belontz, S.L., Cowger, W., Doyle, D., Gray, A., Kane, I., Kooi, M., Kramer, M., Lechthaler, S., Michie, L., Nordam, T., Pohl, F., Russell, C., Thit, A., Umar, W., Valero, D., Varrani, A., Warrier, A.K., Woodall, L.C., and Wu, N. (2022). "Learning from natural sediments to tackle micro-plastics challenges: A multidisciplinary perspective." Earth-Science Reviews, Vol. 228, 104021.
  25. Waldschlager, K., and Schuttrumpf, H. (2019a). "Erosion behavior of different microplastic particles in comparison to natural sediments." Environmental Science & Technology, Vol. 53, pp. 13219-13227. https://doi.org/10.1021/acs.est.9b05394
  26. Waldschlager, K., and Schuttrumpf, H. (2019b). "Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions." Environmental Science & Technology, Vol. 53, pp. 1958-1966. https://doi.org/10.1021/acs.est.8b06794
  27. Waldschlager, K., and Schuttrumpf, H. (2020). "Infiltration behavior of microplastic particles with different densities, sizes, and shapes-from glass spheres to natural sediments." Environmental Science & Technology, Vol. 54, pp. 9366-9373. https://doi.org/10.1021/acs.est.0c01722
  28. Wool, T., Ambrose, Jr. R.B., Martin, J.L., and Comer, A. (2020). "WASP 8: The next generation in the 50- year evolution of USEPA's water quality model." Water, Vol. 12, No. 5, pp. 1398-1431. https://doi.org/10.3390/w12051398
  29. Wool, T.A., Davie, S.R., and Rodriguez, H.N. (2003). "Development of three dimensional hydrodynamic and water quality model to support total maximum daily load decision process for the Neuse River Estuary, North Carolina." Journal of Water Resources Planning and Management, Vol. 129, pp. 295-306. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:4(295)
  30. Yu, X., Ladewig, S., Bao, S., Toline, C.A., Whitmire, S., and Chow, A.T. (2018). Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Science of the Total Environment, Vol. 613-614, pp. 298-305.  https://doi.org/10.1016/j.scitotenv.2017.09.100