DOI QR코드

DOI QR Code

고온 노출 니켈기 초내열합금 터빈 블레이드의 Cr/Ti/Al 성분이 고온 산화에 미치는 영향

Effect of Cr/Ti/Al Elements on High Temperature Oxidation Behavior of a Ni-Based Superalloy with Thermal Exposure

  • 최병학 (강릉원주대학교 신소재금속공학과) ;
  • 한성희 (강릉원주대학교 신소재금속공학과) ;
  • 김대현 (강릉원주대학교 신소재금속공학과) ;
  • 안종기 (한화에어로스페이스) ;
  • 이재현 (창원대학교 신소재공학부) ;
  • 최광수 (국립과학수사연구원 서울과학수사연구소 이공학과)
  • Byung Hak Choe (Department of Metal and Materials Engineering, Gangneung-Wonju National University) ;
  • Sung Hee Han (Department of Metal and Materials Engineering, Gangneung-Wonju National University) ;
  • Dae Hyun Kim (Department of Metal and Materials Engineering, Gangneung-Wonju National University) ;
  • Jong Kee Ahn (Hanwha Aerospace) ;
  • Jae Hyun Lee (School of Material Science & Engineering, Changwon National University) ;
  • Kwang Soo Choi (Engineering Division, National Forensic Service Seoul Institute)
  • 투고 : 2022.11.11
  • 심사 : 2023.02.23
  • 발행 : 2023.02.27

초록

High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ' precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several ㎛ depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or µ phase of TCP precipitation with the high-Cr component resulting in material brittleness.

키워드

과제정보

This work was supported by "Power Generation & Electricity Delivery (No. 20193310100090)" of the Korea Institute of Energy Technology Evaluation and Planning from the Ministry of Trade, Industry and Energy, Republic of Korea. And this research was also supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2023RIS-005).

참고문헌

  1. C.-O. A. Olsson and D. Landolt, Electrochim. Acta, 48, 1093 (2003). 
  2. H. Fischmeister and U. Roll, Fresenius Z. Anal. Chem., 319, 639 (1984). 
  3. J. Potgieter, N. Maledi, M. Sephton and L. Cornish, Platinum Met. Rev., 54, 112 (2010). 
  4. Y. Nakagawa, Superalloys, p.3, ed. K. A. Green, T. M. Pollock and H. Harada, TMS (The Minerals, Metals & Materials Society) (2004). 
  5. J. R. Nicholls, N. J. Simms, W. Y. Chan and H. E. Evans, Surf. Coat. Technol., 149, 236 (2002). 
  6. K. S. Srinivasa and S. D. Rani, Int. J. Appl. Res. Mech. Eng., 2, 223 (2013). 
  7. I. Okada, T. Torigoe, K. Takahashi and D. Izutsu, Superalloys, p.707, ed. K. A. Green, T. M. Pollock and H. Harada, TMS (The Minerals, Metals & Materials Society) (2004). 
  8. C. M. Younes, G. C. Allen and J. A. Nicholson, Corros. Eng., Sci. Technol., 42, 80 (2007). 
  9. D. K. Das, V. Singh and S. V. Joshi, Mater. Sci. Technol., 19, 695 (2003). 
  10. M.-S. Chiou, S.-R. Jian, A.-C. Yeh and C.-M. Kuo, Int. J. Electrochem. Sci., 10, 5981 (2015). 
  11. H. T. Mallikarjuna, W. F. Caley and N. L. Richards, J. Mater. Eng. Perform., 26, 4838 (2017). 
  12. J. Wang, H. Xue and Y. Wang, Rare Met., 40, 616 (2021). 
  13. S. Cruchley, M. P. Taylor, R. Ding, H. E. Evans, D. J. Child and M. C. Hardy, Corros. Sci., 100, 242 (2015). 
  14. S. Cruchley, H. E. Evans, M. P. Taylor, M. C. Hardy and S. Stekovic, Corros. Sci., 75, 58 (2013). 
  15. O. Dziuba, G. Cempura, A. Wusatowska-Sarnek and A. Kruk, J. Mater. Eng. Perform., 29, 1515 (2020). 
  16. C. M. F. Rae, M. S. A. Karunaratne, C. J. Small, R. W. Broomfield, C. N. Jones and R. C. Reed, Superalloys, p.767, ed. T. M. Pollock, R. D., Kissinger, R. R. Bowman, K. A. Green, M. McLean, S. Olson and J. J. Schirra, TMS (The Minerals, Metals & Materials Society) (2000). 
  17. S. Antonov, J. Huo, Q. Feng, D. Isheim, D. N. Seidman, R. C. Helmink, E. Sun and S. Tin, Mater. Sci. Eng., A, 687, 232 (2017). 
  18. R. Darolia, D. F. Lahrman and R. Sisson, Superalloys, p.255, ed. S. Reichman, D. N. Duhl, G. Maurer, S. Antolovich and C. Lund, The Metallurgical Society (1988). 
  19. X. Z. Qin, J. T. Guo, C. Yuan, G. X. Yang, L. Z. Zhou and H. Q. Ye, J. Mater. Sci., 44, 4840 (2009). 
  20. N. K. Mukhopadhyay and T. P. Yadav, J. Indian Inst. Sci., 102, 59 (2022).