DOI QR코드

DOI QR Code

레이저 가공을 이용한 이온교환막 표면의 비전도성 마이크로 패턴의 제작

Fabrication of Nonconductive Microscale Patterns on Ion Exchange Membrane by Laser Process

  • 최진웅 (공주대학교 미래융합공학과) ;
  • 조명현 (공주대학교 미래융합공학과) ;
  • 김범주 (공주대학교 미래융합공학과)
  • Jinwoong Choi (Department of Future Convergence Engineering, Kongju National University) ;
  • Myeonghyeon Cho (Department of Future Convergence Engineering, Kongju National University) ;
  • Bumjoo Kim (Department of Future Convergence Engineering, Kongju National University)
  • 투고 : 2023.01.09
  • 심사 : 2023.01.30
  • 발행 : 2023.02.27

초록

The electroconvection generated on the surface of an ion exchange membrane (IEM) is closely related to the electrical/chemical characteristics or topology of the IEM. In particular, when non-conductive regions are mixed on the surface of the IEM, it can have a great influence on the transfer of ions and the formation of nonlinear electroconvective vortices, so more theoretical and experimental studies are necessary. Here, we present a novel method for creating microscale non-conductive patterns on the IEM surface by laser ablation, and successfully visualize microscale vortices on the surface modified IEM. Microscale (~300 ㎛) patterns were fabricated by applying UV nanosecond laser processing to the non-conductive film, and were transferred to the surface of the IEM. In addition, UV nanosecond laser process parameters were investigated for obvious micro-pattern production, and operating conditions were optimized, such as minimizing the heat-affected zone. Through this study, we found that non-conductive patterns on the IEM surface could affect the generation and growth of electroconvective vortices. The experimental results provided in our study are expected to be a good reference for research related to the surface modification of IEMs, and are expected to be helpful for new engineering applications of electroconvective vortices using a non-conductive patterned IEM.

키워드

과제정보

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MS IT) (No. 2022R1F1A1064531) and (MOE) (2021RIS-004).

참고문헌

  1. H. Strathmann, Ion-Exchange Membrane Separation Processes, 1st ed., p. 89, Elsevier, Netherlands (2004).
  2. J. G. Wijmans and R. W. Baker, J. Membr. Sci., 107, 1 (1995).
  3. S. Al-Amshawee, M. Y. B. M. Yunus, A. A. M. Azoddein, D. G. Hassell, I. H. Dakhil and H. A. Hasan, Chem. Eng. J., 380, 122231 (2020).
  4. S. J. Peighambardoust, S. Rowshanzamir and M. Amjadi, Int. J. Hydrogen Energy, 35, 17 (2010).
  5. P. Alotto, M. Guarnieri and F. Moro, Renewable Sustainable Energy Rev., 29, 325 (2014).
  6. S. S. Dukhin, Adv. Colloid Interface Sci., 35, 173 (1991).
  7. I. Rubinstein, Phys. Fluids, 3, 2301 (1991).
  8. N. Mishchuk and P. Takhistov, Colloids Surf., A, 95, 119 (1995).
  9. R. Kwak, G. Guan, W. K. Peng and J. Han, Desalination, 308, 138 (2013).
  10. R. Kwak, K. M. Lim and J. Han, Phys. Rev. Lett., 110, 114501 (2013).
  11. R. Kwak, V. S. Pham, B. Kim, L. Chen and J. Han, Sci. Rep., 6, 1 (2016).
  12. B. Kim, R. Kwak, H. J. Kwon, V. S. Pham, M. Kim, B. Al-Anzi, G. Lim and J. Han, Sci. Rep., 6, 1 (2016).
  13. B. Kim, S. Choi, R. Kwak and J. Han, J. Membr. Sci., 524, 280 (2017).
  14. V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, N. D. Pismenskaya, J. Han, P. Sistat and G. Pourcelly, Desalination, 342, 85 (2014).
  15. E. Belashova, N. A. Melnik, N. D. Pismenskaya, K. A. Shevtsova, A. V. Nebavsky, K. A. Lebedev and V. V. Nikonenko, Electrochim. Acta, 59, 412 (2012).
  16. E. Korzhova, N. Pismenskaya, D. Lopain, O. Baranov, L. Dammak and V. V. Nikonenko, J. Membr. Sci., 500, 161 (2016).
  17. J. Balster, M. H. Yildirim, D. F. Stamatialis, R. Ibanez, R. G. H. Lammertink, V. Jordan and M. Wessling, J. Phys. Chem. B, 111, 2152 (2007).
  18. J. De Valenca, M. Jogi, R. M. Wagterveld, E. Karatay, J. A. Wood and R. G. H. Lammertink, Langmuir, 34, 2455 (2018).
  19. J. Kim, S. Kim and R. Kwak, Desalination, 499, 114801 (2021).
  20. S. M. Davidson, M. Wessling and A. Mani, Sci. Rep., 6, 1 (2016).
  21. V. I. Zabolotsky, L. Novak, A. V. Kovalenko, V. V. Nikonenko, M. H. Urtenov, K. A. Lebedev and A. Y. But, Pet. Chem., 57, 779 (2017).
  22. F. Roghmans, E. Evdochenko, F. Stockmeier, S. Schneider, A. Smailji, R. Tiwari, A. Mikosch, E. Karatay, A. Kuhne, A. Walther, A. Mani and M. Wessling, Adv. Mater. Interfaces, 6, 1801309 (2019).
  23. J. Jang, M. Kim, J. Shin, D. Yang, M. Kim and B. Kim, Micromachines, 13, 356 (2022).
  24. S. M. Rubinstein, G. Manukyan, A. Staicu, I. Rubinstein, B. Zaltzman, R. G. H. Lammertink, F. Mugele and M. Wessling, Phys. Rev. Lett., 101, 236101 (2008).
  25. I. Rubinstein, B. Zaltzman and T. Pundik, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 65, 041507 (2002).
  26. J. C. De Valenca, R. M. Wagterveld, R. G. H. Lammertink and P. A. Tsai, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 92, 031003 (2015).
  27. C. Druzgalski, M. Andersen and A. Mani, Phys. Fluids, 25, 110804 (2013).
  28. S. Kim, M. Kim, S. Kim, B. Kim and G. Lim, Sens. Actuators, B, 344, 130145 (2021)