DOI QR코드

DOI QR Code

Variations in Morphological and Geochemical Characteristics in Manganese Nodules from the East Siberian Arctic Shelf with Varying Water Depths

동시베리아해 대륙붕에서 산출되는 망가니즈단괴의 수심에 따른 형태학적·지화학적 특성 변화

  • Hyo-Jin Koo (Department of Geology, Gyeongsang National University) ;
  • Hyen-Goo Cho (Department of Geology, Gyeongsang National University) ;
  • Sangmi Lee (Department of Geology, Gyeongsang National University) ;
  • Gi-Teak Lim (Department of Geology, Gyeongsang National University) ;
  • Hyo-Im Kim (Department of Geology, Gyeongsang National University)
  • 구효진 (경상국립대학교 지질과학과) ;
  • 조현구 (경상국립대학교 지질과학과) ;
  • 이상미 (경상국립대학교 지질과학과) ;
  • 임기택 (경상국립대학교 지질과학과) ;
  • 김효임 (경상국립대학교 지질과학과)
  • Received : 2023.01.17
  • Accepted : 2023.02.15
  • Published : 2023.02.28

Abstract

In this study, we explore the morphological and geochemical characteristics for 440 manganese nodules collected from two different water depths [ARA12B-St52 (150 m, n = 239) and ARA12B-St58i (73 m, n = 201)] on the continental shelf of the East Siberian Sea from the ARA12B expedition in 2021. We also discussed the variations in the characteristics of manganese nodules with varying water depths in the Arctic Sea. The sizes of the nodules are generally greater than 3 cm at both sites. However, there is an obvious difference in the morphology with water depths. For the nodules collected at 150 m, brown-black colored tabular, tube, and ellipsoidal shapes with a rough surface texture are dominant. On the other hand, yellow-brown tabular shapes with a smooth surface texture are common for the nodules collected at 73 m. Furthermore, the slope of trend line between size and weight is significantly different at both sites: particularly, the slopes of nodules at 150 and 73 m are 1.60 and 0.84, respectively. This indicates the difference in the internal structure, porosity, and constituting elements between both nodules. Micro X-ray Flourescence (µ-XRF) results clearly demonstrate that the internal textures and chemical compositions are different with water depths. The nodules at 150 m are composed of a thick Mn-layer and a thin Fe-layer centered on the nucleus, while the nodules at 73 m are alternately grown with thin Mn- and Fe- layers around the nucleus. The average chemical compositions obtained by µ-XRF are 40.6 wt% Mn, 5.2 wt% Fe, and 7.9 Mn/Fe ratio at 150 m, and 10.3 wt% Mn, 19.0 wt% Fe, and 0.6 Mn/Fe ratio at 73 m. The chemical compositions of the nodules at 150 m are similar to those of nodules from the Peru Basin in the Pacific Ocean, while the compositions of the nodules at 73 m are similar to those of nodules from the Cook Islands or the Baltic Sea. The observed morphological and geochemical characteristics of the nodules show a clear difference at the two sites, which indicates that the aqueous conditions and formation processes of the nodules in the Arctic Sea vary with the water depths.

이번 연구에서는 2021년 ARA12B 탐사를 통해 동시베리아해 대륙붕의 서로 다른 수심을 갖는 2개의 정점에서 수집한 망가니즈단괴 440개[ARA12B-St52 (150 m, n = 239), ARA12B-St58i (73 m, n = 201)]에 대하여 형태학적·지화학적 분석을 수행하고, 수심에 따른 단괴의 특성 변화를 고찰하였다. 단괴의 크기는 두 정점 모두에서 3 cm 이상의 크기가 일반적이다. 그러나 단괴의 외형적 특징은 수심에 따라 크게 차이가 있다. 수심 150 m에서 획득된 단괴의 일반적인 형태는 거친 표면조직을 가지는 갈색-흑색의 판상형, 원통형 및 타원체형이다. 반면, 수심 73 m에서 회수된 단괴들은 매끄러운 표면을 가지는 노랑-갈색의 판상형 단괴가 대부분을 차지한다. 또한 단괴의 내부조직, 공극률 및 구성원소와 관련이 있는 크기와 무게 간 추세선의 기울기는 150 m의 단괴의 경우 약 1.60, 83 m 단괴는 약 0.84로 큰 차이가 있음이 확인되었다. 이는 단괴의 내부조직 및 화학조성에 차이로부터 기인한다. 단괴의 내부조직과 화학조성 분석 결과, 수심 150 m의 단괴들은 핵을 중심으로 두꺼운 Mn층과 얇은 Fe층들로 이루어진 반면, 83 m의 단괴들은 핵을 중심으로 얇은 Mn 및 Fe층이 교호하며 성장한다. 마이크로 X선 형광분석(µ-XRF)을 통해 단괴의 절개면에서 분석된 평균 화학조성은 150 m 단괴의 경우 Mn 40.6 wt%, Fe 5.2 wt%, Mn/Fe 비 7.9이며, 83 m 단괴의 경우 Mn 10.3 wt%, Fe 19.0 wt%, Mn/Fe 비 0.6이다. 타 해역 단괴들의 화학조성과 비교한 결과 수심 150 m에서 회수된 단괴의 조성은 태평양의 페루 분지의 단괴들과 유사한 반면, 83 m에서 획득된 단괴의 조성은 태평양의 쿡 섬 또는 발트해의 단괴들과 유사하다. 관찰된 단괴들의 형태학적·지화학적 특성은 두 정점에서 뚜렷한 차이를 나타내며, 이는 북극해 대륙붕의 수심에 따라 단괴의 형성 당시의 환경적 조건에 명확한 차이가 있음을 지시한다.

Keywords

Acknowledgement

본 연구는 과학기술 정보통신부의 재원으로 한국연구재단에서 지원하는 기초연구사업(NRF-2022R1C1C1003385, NRF-2022R1F1A1060734 및 NRF-2022R1A6A3A01087256)의 지원을 받아 수행되었습니다. XRF 분석에 도움을 주신 연세대학교 이용재 교수님께 깊은 감사의 마음을 전합니다. 아울러 본 논문에 발전적인 조언을 해주신 심사위원님들께 감사드립니다.

References

  1. Anufriev, G. and Boltenkov, B. (2007) Ferromanganese nodules of the Baltic Sea: composition, helium isotopes, and growth rate. Lithology and Mineral Resources, v.42, p.240-245. doi: 10.1134/S0024490207030030.
  2. Baturin, G.N. and Dubinchuk, V.T. (2011) The composition of ferromanganese nodules of the Chukchi and East Siberian Seas. Doklady Earth Sciences, v.440, p.1258-1264. doi: 10.1134/s1028334x11090029.
  3. Baturin, G.N., Dubinchuk, V.T. and Novigatsky, A.N. (2016) Phase distribution of elements in ferromanganese nodules of the Kara Sea. Doklady Earth Sciences, v.471, p.1199-1203. doi: 10.1134/s1028334x16110209.
  4. Baturin, G.N. (2019) Distribution of elements in ferromanganese nodules in seas and lakes. Lithology and Mineral Resources, v.54, p.362-373. doi: 10.1134/s002449021905002x.
  5. Benites, M., Millo, C., Hein, J., Nath, B.N., Murton, B., Galante, D. and Jovane, L. (2018) Integrated Geochemical and morphological data provide insights into the genesis of ferromanganese nodules. Minerals, v.8, p.488. doi: 10.3390/min8110488.
  6. Bogdanov, Yu.A., Gorshkov, E.G., Bogdanova, O.Yu., Ivanov, G.V., Isaeva, A.B. and Murav'ev, K.G. (1995) Ferromanganese nodules of the Kara Sea. Oceanology, v.34, p.722-732.
  7. Bonatti, E., Kraemer, T. and Rydell, H. (1972) Classification and genesis of submarine iron-manganese deposits. In: Horn, D.R.(ed.) Ferromanganese Deposits on the Ocean Floor, NSF, Washington D.C., p.149-166.
  8. Cherkashov, G., Smyslov, A. and Soreide, F. (2013) Fe-Mn nodules of the Finnish bay (Baltic Sea): Exploration and exploitation experience. In: Morgan, C.L. (ed.) Recent developments in Atlantic seabed minerals exploration and other topics of timely interest, The Underwater Mining Institute, Rio de Janeiro, 4p.
  9. Choi, H.S., Chang, S.-W. and Lee, S.-R. (2000) Correlation between mineralogical and chemical compositions of the microtextures in manganese nodules. Journal of the Mineralogical Society of Korea, v.13, p.205-220.
  10. Dymond, J., Lyle, M., Finney, B., Piper, D. Z., Murphy, K., Conard, R. and Pisias, N. (1984) Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta, v.48, p.931-949. doi: 10.1016/0016-7037(84)90186-8.
  11. Glasby, G.P., Emelyanow, E.M., Zhamoida, V.A., Baturin, G.N., Leipe, T., Bahlo, R. and Bonacker, P. (1997) Environments of formation of ferromanganese concretions in the Baltic Sea: a critical review. In: Nickelson, K., Hein, J.R., Buhn, B. and Dasgupta, S. (eds.) Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geological Society Special Publication, v.119, p.213-238. doi: 10.1144/GSL.SP.1997.119.01.14.
  12. Glasby, G.P. (2006) Manganese: predominant role of nodules and crusts. In Schulze, H.D. and Zabel, M. (eds.) Marine geochemistry. Springer, Berlin, Heidelberg, p.371-427. doi: 10.1007/3-540-32144-6_11.
  13. Halbach, P. and Puteanus, D. (1988) Geochemical trends of different genetic types of nodules and crusts. In Halbach, P., Friedrich, G. and von Stackelberg, U. (eds.) The manganese nodule belt of the Pacific Ocean: Geological environment, nodule formation, and mining aspects. Ferdinand Enke Verlag, Stuttgart, p.61-69.
  14. Hayles, S., Al, T., Cornett, J., Harrison, A. and Zhao, J. (2021) Growth rates for freshwater ferromanganese concretions indicate regional climate change in eastern Canada at the Northgrippian-Meghalayan boundary. The Holocene, v.31, p.1250-1263. doi: 10.1177/09596836211011652.
  15. Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A. (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geology Reviews, 51, 1-14. doi: 10.1016/j.oregeorev.2012.12.001.
  16. Hein, J.R., Spinardi, F., Okamoto, N., Mizell, K., Thorburn, D. and Tawake, A. (2015) Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geology Reviews, v.68, p.97-116. doi: 10.1016/j.oregeorev.2014.12.011.
  17. Hein, J.R., Koschinsky, A. and Kuhn, T. (2020) Deep-ocean polymetallic nodules as a resource for critical materials. Nature Reviews Earth and Environment, v.1, p.158-169. doi: 10.1038/s43017-020-0027-0.
  18. Ingri, J. (1985) Geochemistry of ferromanganese concretions in the Barents Sea. Marine Geology, v.67, p.101-119. doi: 10.1016/0025-3227(85)90150-1.
  19. Kang, S.-H. (2012) RV Araon ARA03B, August 1-Septmeber 10, 2012 Chukchi Borderland and Mendeleyev Ridge. Korea Polar Research Institute, Incheon, 174p.
  20. Kolesnik, O.N. and Kolesnik, A.N. (2013) Specific chemical and mineral composition of ferromanganese nodules from the Chukchi Sea. Russian Geology and Geophysics, v.54, p.653-663. doi: 10.1016/j.rgg.2013.06.001.
  21. Koo, H.J., Cho, H.G., Yoo, C.M. and Jin, Y.K. (2017) Characteristics of manganese nodule from the East Siberian Sea. Journal of the Mineralogical Society of Korea, v.30, p.219-227. doi: 10.9727/jmsk.2017.30.4.219.
  22. Koo, H., Park, M., Seo, C. and Cho, H. (2021) Characteristics of non-spherical manganese nodule from the East Siberian Sea. Korean Journal of Mineralogy and Petrology, v.34, p.241-253. doi: 10.22807/KJMP.2021.34.4.241.
  23. Kuhn, T., Wegorzewski, A., Ruhlemann, C. and Vink, A. (2017) Composition, formation, and occurrence of polymetallic nodules. In Sharma, R. (ed.) deep-sea mining. Springer, Cham, p.23-63. doi: 10.1007/978-3-319-52557-0_19.
  24. Lee, S.M., Koo, H.J., Cho, H.G. and Kim, H.-I. (2022) Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean. Korean Journal of Mineralogy and Petrology, v.35, p.409-421. doi: 10.22807/KJMP.2022.35.4.409.
  25. Mero, J.L. (1962) Ocean-floor manganese nodules. Economic Geology, v.57, p.747-767. doi: 10.2113/gsecongeo.57.5.747.
  26. Meylan, M.A. (1974) Field description and classification of manganese nodules. Hawaii Inst Geophys Rep, v.74, p.158-168. doi: 10.15080/agcjchikyukagaku.58.6_375.
  27. Murray, J. (1878) On the distribution of volcanic debris over the floor of the ocean. Proceedings of the Royal Society of Edinburgh, v.9, p.247-261. doi: 10.1017/s0370164600032181.
  28. Riley, J.P. and Sinhaseni, P. (1958) Chemical composition of three manganese nodules from the Pacific Ocean. Journal of Marine Research, v.17, p.466-482.
  29. Sun, F. and Zhao, Z. (2020) An interdisciplinary perspective from the earth scientist's periodic table: similarity and connection between geochemistry and metallurgy. Engineering, v.6, p.707-715. doi: 10.1016/j.eng.2020.04.002.
  30. Szamalek, K., Uscinowicz, S. and Zglinicki, K. (2018) Rare earth elements in Fe-Mn nodules from the southern Baltic Sea - A preliminary study. Biuletyn Panstwowego Instytutu Geologicznego, v.472, p.199-212. doi: 10.5604/01.3001.0012.7118.
  31. Usui, A. and Moritani, T. (1992) Manganese nodule deposits in the Central Pacific Basin: Distribution, geochemistry, mineralogy and genesis. In Kreating, B.H. and Bolton, B.R. (eds.) Geology and off-shore mineral resources of central Pacific basin Circum-Pacific council for energy and mineral resources. Earth Science Series, v.14, p.205-223. doi: 10.1007/978-1-4612-2896-7_11.
  32. Vereshchagin, O.S., Perova, E.N., Brusnitsyn, A.I., Ershova, V.B., Khudoley, A.K., Shilovskikh, V.V. and Molchanov, E.V. (2019) Ferro-manganese nodules from the Kara Sea: Mineralogy, geochemistry and genesis. Ore Geology Reviews, v.106, p.192-204. doi: 10.1016/j.oregeorev.2019.01.023.
  33. Wegorzewski, A.V. and Kuhn, T. (2014) The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Marine Geology, v.357, p.123-138. doi: 10.1016/j.margeo.2014.07.004.
  34. Yu, H.J., Shin, E.J., Koo, H.J. and Cho, H.G. (2020) Semiquantitative analysis of manganese oxide mineral in manganese nodule from the East Siberian Sea. Korean Journal of Mineralogy and Petrology, v.33, p.427-437. doi: /10.22807/KJMP.2020.33.4.427.