DOI QR코드

DOI QR Code

Effect of Extracted Tempered Glass from End-of-Life Solar Panels on Mechanical Properties of Mortar

사용수명이 종료된 태양광 패널에서 분리된 강화유리가 모르타르의 역학적 특성에 미치는 영향

  • 최소영 (강릉원주대학교 방재연구소 ) ;
  • 김상우 (성균관대학교 건설환경시스템공학과 ) ;
  • 김일순 (강릉원주대학교 방재연구소 ) ;
  • 양은익 (강릉원주대학교, 건설환경공학과)
  • Received : 2023.03.24
  • Accepted : 2023.04.11
  • Published : 2023.04.30

Abstract

As the installation of solar panel accelerates, so does the number of solar panels reaching their end-of-life (EOL). However, the EOL solar panels is becoming a concern, as they contain potentially hazardous materials and are not easily recycled. Coping strategies such as effective collection, disposal, and recycling methods will be important to manage the growing number of EOL solar panels in the coming years.Therefore, many studies have focused on the development of EOL solar panel recycling technology. One recycling technology for EOL solar panels applicable to the construction field is the application of extracted tempered glass from EOL solar panels as construction materials. This study summarized the EOL solar panel disassembly technology and evaluated the mechanical properties of mortar using extracted tempered glass as fine aggregate. The results showed that when tempered glass was used as a fine aggregate in mortar, the compressive strength, flexural strength, and macro pores in the 1-3 ㎛ with 200-300 ㎛ range were affected, regardless of the disassembly technology of EOL solar panels. Especially, we found that the mechanical performance of mortar using chemically treated tempered glass was noticeably decreased due to changes in the chemical composition of the extracted tempered glass resulting from the removal of K2O and CuO due to chemical reactions. Meanwhile, it was found that when fly ash was used as a binder, the reduction of mechanical performance could be alleviated.

태양광 패널의 설치가 가속화됨에 따라 사용수명이 종료된 태양광 패널도 증가하고 있다. 그러나 사용수명이 종료된 태양광 패널은 잠재적으로 위험한 물질을 포함하고 쉽게 재활용되지 않으므로 문제를 야기하고 있다. 사용수명이 종료된 태양광 패널의 효과적인 수거, 폐기 및 재활용 방법과 같은 대처 방안이 요구된다. 따라서 사용수명이 종료된 태양광 패널 재활용 기술 개발에 많은 연구가 진행되고 있다. 건설 분야에서 적용할 수 있는 태양광 패널의 재활용 기술 중 하나로, 사용수명이 종료된 태양광 패널에서 분리한 강화유리를 건설재료로 적용하는 것이 있다. 따라서 본 연구에서는 사용수명이 종료된 태양광 패널의 분리 기술을 정리하고 추출된 강화유리를 잔골재로 사용하여 모르타르의 역학적 성능을 평가하였다. 그 결과, 강화유리를 모르타르의 잔골재로 사용할 경우, 사용수명이 종료된 태양광 패널의 분리 기술과 관계없이 압축강도, 휨강도 및 1~3 ㎛, 200~300 ㎛ 범위의 거시공극이 영향을 받는 것으로 나타났다. 특히, 화학 처리된 강화유리를 사용한 모르타르는 화학반응으로 인해 소산된 K2O와 CuO로 인해 주목할 만한 역학적 성능의 저하가 발생하는 것으로 나타났다. 한편, 플라이애시를 결합재로 사용할 경우, 모르타르의 역학적 성능 저하를 완화할 수 있는 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다. 이에 감사드립니다(No. 2021R1A2C2008923).

References

  1. Azeumo, M. F., Conte, G., Ippolito, N. M., Medici, F., Piga, L., and Santilli, S. (2019), Photovoltaic module recycling, a physical and a chemical recovery process, Solar Energy Materials and Solar Cells, 193, 314-319.  https://doi.org/10.1016/j.solmat.2019.01.035
  2. Bluhm, H., Frey, W., Giese, H., Hoppe, P., Schultheiss, C., and Strassner, R. (2000), Application of pulsed HV discharges to material fragmentation and recycling, IEEE Transactions on Dielectrics and Electrical Insulation, 7(5), 625-636.  https://doi.org/10.1109/94.879358
  3. Bruton T. M. (1994), Re-cycling of high value, high Energy content components of Silicon PV modules, 12th EU-PVSEC, 303-344. 
  4. Choi, S. S., and Kim, E. (2017), Analysis of pyrolysis products of ethylene-vinyl acetate coploymer (EVA) using pre-deacetylation, Journal of Analytical and Applied Pyrolysis, 127, 1-7.  https://doi.org/10.1016/j.jaap.2017.09.015
  5. Choi, S. Y., Choi, Y. S., Won, M. S., and Yang, E. I. (2015), Evaluation on the Applicability of Heavy Weight Waste Glass as Fine Aggregate of Shielding Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(4), 101-108 (in Korean).  https://doi.org/10.11112/JKSMI.2015.19.4.101
  6. Choi, Y. S., Lee, S. M., Kim, T. S., Kim, I. S., and Yang, E. I. (2019), Effect of Replacing Fine Aggregate by Cathode-Ray Tube(CRT) Waste Glass on Gamma-ray Shielding Properties of Cement Mortar Specimen, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(7), 172-180 (in Korean).  https://doi.org/10.11112/JKSMI.2019.23.7.172
  7. Corcelli, F., Ripa, M., Leccisi, E., Cigolotti, V., Fiandra, V., Graditi, G., Sannino, L., Tammaro, M., and Ulgiati, S. (2018), Sustainable urban electricity supply chain - Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life, Ecological Indicators, 94(3), 37-5. 
  8. Dias, P., Schmidt, L., Gomes, L. B., Bettanin, A., Veit, H., and Bernardes, A. M.(2018), Recycling waste crystalline silicon photovoltaic modules by electrostatic separation, Journal of Sustainable Metallurgy, 4, 176-186.  https://doi.org/10.1007/s40831-018-0173-5
  9. Dominguez, A., and Geyer, R. (2017), Photovoltaic waste assessment in Mexico, Resources, Conservation and Recycling, 127, 29-34.  https://doi.org/10.1016/j.resconrec.2017.08.013
  10. Doni, A., and Fabrizio D. (2012), Electrothermal heating process applied to c-Si PV recycling. 2012 38th IEEE Photovoltaic Specialists Conference, 757-762. 
  11. Fiandra, V., Sannino, L., Andreozzi, C., Corcelli, F., and Graditi, G. (2019), Silicon photovoltaic modules at end-of-life: removal of polymeric layers and separation of materials, Waste Management, 87, 97-107.  https://doi.org/10.1016/j.wasman.2019.02.004
  12. Fiandra, V., Sannino, L., Andreozzi, C., and Graditi, G. (2019), End-of- life of silicon PV panels: a sustainable materials recovery process, Waste Management, 84, 91-101.  https://doi.org/10.1016/j.wasman.2018.11.035
  13. Frisson, L., Lieten, K., Bruton, T., Declercq, K., Szlufcik, J., De Moor, H., Gorts, M., Benal, A., and Aceves, O. (2020), Recent improvements in industrial PV module recycling, Sixteenth European Photovoltaic Solar Energy, 1-5. 
  14. Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., and Toro, L. (2014), Recycling of photovoltaic panels by physical operations, Solar Energy Materials and Solar Cells, 123, 239-248.  https://doi.org/10.1016/j.solmat.2014.01.012
  15. Latunussa, C. E. L., Ardente, F., Blengini, G. A., and Mancini, L. (2016), Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels, Solar Energy Materials and Solar Cells, 156, 101-111.  https://doi.org/10.1016/j.solmat.2016.03.020
  16. Lovato, E. S., Donato, L. M., Lopes, P. P., Tanabe, E. H., Bertuol, D. A. (2021), Application of supercritical CO2 for delaminating photovoltaic panels to recover valuable materials, Journal of CO2 Utilization, 46, 101477. 
  17. Kim, Y. M., Choi, S. Y., Kim, I. S., and Yang, E. I. (2018), A study on the Mechanical Properties of Concrete using Electronic Waste as Fine Aggregate, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(2), 90-97 (in Korean).  https://doi.org/10.11112/JKSMI.2018.22.2.090
  18. Mo, J. Y., and Kim, M. J. (2020), Economic analysis of Solar PV panel recycling project, Journal of the Korea Academia-Industrial Cooperation Society, 21(5), 585-591.  https://doi.org/10.5762/KAIS.2020.21.5.585
  19. Nevala, S. M., Hamuyuni, J., Junnila, T. Sirvio, T., Eisert, S., Wilson, B. P., Serna- Guerrero, R., and Lundstrom, M. (2019), Electro- hydraulic fragmentation vs conventional crushing of photovoltaic panels - impact on recycling, Waste Management, 87, 43-50.  https://doi.org/10.1016/j.wasman.2019.01.039
  20. Pagnanelli, F., Moscardini, E., Granata, G., Abo Atia, T., Altimari, P., Havlik, T., and Toro, L. (2017), Physical and chemical treatment of end of life panels: an integrated automatic approach viable for different photovoltaic technologies, Waste Management, 59, 422-431.  https://doi.org/10.1016/j.wasman.2016.11.011
  21. Riech, I., Castro-Montalvo,C., Wittersheim, L., Giacoman-Vallejos, G., Gonzalez-Sanchez, A., Gamboa-Loira, C., Acosta M., and Mendez-Gamboa, J. (2021), Experimental Methodology for the Separation Materials in the Recycling Process of Silicon Photovoltaic Panels, Materials, 14(3), 581. 
  22. Shi, F., Zuo, W., and Manlapig, E. (2013), Characterisation of preweakening effect on ores by high voltage electrical pulses based on single-particle tests, Minerals Engineering, 50-51, 69-76.  https://doi.org/10.1016/j.mineng.2013.06.017
  23. Tembo, P. M., Heninger, M., and Subramanian, V. (2021), An investigation of the recovery of silicon photovoltaic cells by application of an organic solvent method, ECS Journal of Solid State Science and Technology, 10, 025001. 
  24. Wang, R., Song, E., Zhang, C., Zhuang, X., Ma, E., Bai, J., Yuan, W., and Wang, J. (2019), Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment. RSC Advances, 9(32), 18115-18123.  https://doi.org/10.1039/C9RA03582F
  25. Wang, X., Tian, X., Chen, X., Ren, L., and Geng, C. (2022), A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology, Solar Energy Materials and Solar Cells, 248, 111976. 
  26. Yan, Y., Wang, Z. Wang, D., Cao, J., Ma, W., Wei, K., and Yun, L.(2020), Recovery of silicon via using KOH-ethanol solution by separating different layers of end-of-life PV modules, Recycling Silicon and Silicon Compounds, 72, 2624-2632. https://doi.org/10.1007/s11837-020-04193-6