DOI QR코드

DOI QR Code

차량 군집 주행에 따른 교량 안전성 분석에 관한 연구

A Study on the Analysis of Bridge Safety by Truck Platooning

  • 박상원 (명지대학교 토목환경공학화 ) ;
  • 장민우 (명지대학교 토목환경공학화 ) ;
  • 윤덕근 (한국건설기술연구원 연구전략기획본부 ) ;
  • 노민형 (한국건설기술연구원 도로교통연구본부)
  • 투고 : 2023.02.15
  • 심사 : 2023.03.30
  • 발행 : 2023.04.30

초록

인공지능 제반 기술의 발전에 힘입어 도로교통에서 자율주행이 점진적으로 보편화되고 있는 추세이다. 물류 운송 체계에 있어 화물차량의 군집주행은 물류수송의 효용을 극대화할 수 있는 장점이 있기 때문에, 이를 위한 초연결 자율주행 (Connected-Automated Vehicle) 기술이 빠르게 진화하고 있다. 그러나 군집주행으로 인한 반복 하중이 시설물에 미치는 영향에 대한 구조적 검토는 미흡한 편이다. 이 연구에서는 군집 주행 시 발생하는 교량의 동적 거동을 분석하고, 운행 안전성을 확보하기 위해 다양한 시나리오 구성하여 매개변수에 따른 응답의 증폭을 비교하였다. 주행 조건에 따른 동적 거동의 변화를 평가하기 위해 인공지능 기법을 활용하여 군집주행시 최대응답을 추정하고, 활용된 매개 변수의 중요도를 평가하였다. 인공지능 기법에 따른 추정 변위의 정합성을 평가함으로써, 최적합 알고리즘을 선정하였다.

Autonomous driving technologies have been gradually improved for road traffic owing to the development of artificial intelligence. Since the truck platooning is beneficial in terms of the associated transporting expenses, the Connected-Automated Vehicle technology is rapidly evolving. The structural performance is, however, rarely investigated to capture the effect of truck platooning on civil infrastructures.In this study, the dynamic behavior of bridges under truck platooning was investigated, and the amplification factor of responses was estimated considering several parameters associated with the driving conditions. Artificial intelligence techniques were used to estimate the maximum response of the mid span of a bridge as the platooning vehicles passing, and the importance of the parameters was evaluated. The most suitable algorithm was selected by evaluating the consistency of the estimated displacement.

키워드

과제정보

이 연구는 한국연구재단 기초연구사업의 지원(G2022R1G1A1006194)과 국토교통부/국토교통과학기술진흥원의 연구비 지원(22AMDP-C160881-02)을 받아 수행된 연구입니다.

참고문헌

  1. Sajid, S., Chouinard, L., Legeron, F., Ude, T., He, E., and Ajrab, J. (2022). Reliability analysis of bridges for autonomous truck platoons. Transportation Research Record, 03611981221103235.
  2. Ramezani, H., Shladover, S. E., Lu, X. Y., and Altan, O. D. (2018). Micro-simulation of truck platooning with cooperative adaptive cruise control: Model development and a case study. Transportation Research Record, 2672(19), 55-65. https://doi.org/10.1177/0361198118793257
  3. Jeong, Y. D., Go, H. I., Kang, Y. S., Eom, K. H., and Lee, S. T. (2019). Analytical Research on Dynamic Behavior of Steel Composite Lower Railway Bridge. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(1), 27-35.
  4. Lee, S. J., Yoo, S. S., Park, Y. H., and Baek, I. Y. (2020). Safety Evaluation of Concrete Bridges for Passage of Crane Vehicle Exceeding Weight Limit. Journal of the Korea Institute for Structural Maintenance and Inspection, 24(6), 92-101. https://doi.org/10.11112/JKSMI.2020.24.6.92
  5. Hong, S. H., and Roh, H. S. (2018). Investigation of Impact Factor and Response Factor of Simply Supported Bridges due to Eccentric Moving Loads. Journal of the Korea Institute for Structural Maintenance and Inspection, 22(6), 105-113. https://doi.org/10.11112/JKSMI.2018.22.6.105
  6. Design Standard for Highway Bridges (Limit State Design Method). (2016). General Bridges Volume.
  7. Khayyam, H., Javadi, B., Jalili, M., and Jazar, R. N. (2020). Artificial intelligence and internet of things for autonomous vehicles. Nonlinear Approaches in Engineering Applications: Automotive Applications of Engineering Problems, 39-68.
  8. Han, E., Park, S., Jeong, H., Lee, C., and Yun, I. (2016). The Development of an Algorithm for the Optimal Signal Control for Isolated Intersections under V2X Communication Environment. Journal of The Korea Institute of Intelligent Transport Systems, 15(6), 90-101. https://doi.org/10.12815/kits.2016.15.6.090
  9. Jeong, S., Kim, H., Kim, S. I., and Lee, K. C. (2022). Dynamic Amplification Assessment of High-Speed Railway Bridge Under Resonance Condition Using Multi-Sensor Fusion. International Journal of Rail Transportation, 10(4), 456-475. https://doi.org/10.1080/23248378.2021.1944827
  10. Othman, K. (2021). Impact of Autonomous Vehicles on the Physical Infrastructure: Changes and Challenges. Designs, 5(3), 40.
  11. Su, X., Yan, X., and Tsai, C. L. (2012). Linear regression. Wiley Interdisciplinary Reviews: Computational Statistics, 4(3), 275-294. https://doi.org/10.1002/wics.1198
  12. Liaw, A., and Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18-22.
  13. Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003). KNN model-based approach in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986-996). Springer Berlin Heidelberg.
  14. Schapire, R. E. (2013). Explaining adaboost. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, 37-52.
  15. Yazdanpanah, O., Dolatshahi, K. M., and Moammer, O. (2023). Rapid Seismic Fragility Curves Assessment of Eccentrically Braced Frames Through an Output-Only Nonmodel-Based Procedure and Machine Learning Techniques. Engineering Structures, 278, 115290.
  16. Ling, T., Cao, R., Deng, L., He, W., Wu, X., and Zhong, W. (2022). Dynamic Impact of Automated Truck Platooning on Highway Bridges. Engineering Structures, 262, 114326.
  17. Midas (2018) Civil On-line Manual - Civil structure design system.
  18. Van Rossum, G., and Drake Jr, F. L. (1995). Python tutorial (Vol. 620). Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica.