DOI QR코드

DOI QR Code

Basic Performance Test of a Three Phase AC Arc Plasma Torch System for Plasma Gas Reforming

플라즈마 가스 개질 응용을 위한 3상 아크 플라즈마 토치 시스템 특성 실험

  • DONG-HYUN LEE (Department of Quantum System Engineering, Jeonbuk National University) ;
  • DARIAN FIGUERA-MICHAL (Department of Quantum System Engineering, Jeonbuk National University) ;
  • HAE-WON PARK (Department of Quantum System Engineering, Jeonbuk National University) ;
  • NAM-KI LEE (Department of Quantum System Engineering, Jeonbuk National University) ;
  • SANG-YUN PAEK (Department of Quantum System Engineering, Jeonbuk National University) ;
  • SHIYOUNG YANG (Gradate School of Flexible Printing and Electronics, Jeonbuk National University) ;
  • JUN-HO SEO (Department of Quantum System Engineering, Jeonbuk National University)
  • 이동현 (전북대학교 양자시스템공학과) ;
  • 다리안 (전북대학교 양자시스템공학과) ;
  • 박해원 (전북대학교 양자시스템공학과) ;
  • 이남기 (전북대학교 양자시스템공학과) ;
  • 백상윤 (전북대학교 양자시스템공학과) ;
  • 양시영 (전북대학교 유연인쇄전자전문대학원) ;
  • 서준호 (전북대학교 양자시스템공학과)
  • Received : 2023.01.02
  • Accepted : 2023.02.15
  • Published : 2023.02.28

Abstract

In this work, we report basic performance test results of a lab-scale three phase alternative current (AC) arc plasma torch system for plasma gas reforming applications. The suggested system primarily consists of three graphite electrodes inclined at 12.5° to the central axis, a 𝞥 150 mm cylindrical gas path and a three phase-60 Hz AC power supply. At air flow rate of 50 Lpm and arc currents of 100-175 A, test results revealed that plasma resistances were decreasing from 1.08 Ω to 0.53 Ω with the increase of plasma power from 9.3 kW to 13.8 kW, causing the decrease of power factor and increase of the line voltages. However, the injected air can be heated quickly up to the temperatures of >1,200℃ when injecting AC arc plasma powers of >10 kW.

Keywords

Acknowledgement

This work was supported by grants (No. 2021R1 A2C201467, NRF-2019M1A7A1A03089763) of the National Research Foundation (NRF) funded by The Ministry of Science and ICT (MSIT) and a grant (20229A10100120) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by The Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea. This paper has been written with the support of Jeollannam-do ('2020 R&D supporting program' operated by Jeonnam Technopark).

References

  1. P. Fauchais and A. Vardelle, "Thermal plasmas", IEEE Transactions on Plasma Science, Vol. 25, No. 6, 1997, pp. 1258-1280, doi: https://doi.org/10.1109/27.650901.
  2. F. Fabry, C. Rehmet, V. Rohani, and L. Fulcheri, "Waste gas ification by thermal plasma: a review", Waste and Biomass Valorization, Vol. 4, 2013, pp. 421-439, doi: https://doi.org/10.1007/s1264901392017.
  3. J. Heberlein and A. B. Murphy, "Thermal plasma waste trea tment", Journal of Physics D: Applied Physics, Vol. 41, No. 5, 2008, pp. 053001, doi: https://doi.org/10.1088/00223727/41/5/053001.
  4. C. Kim, "Characteristics of LPG fuel reforming using plasma technology", Trans Korean Hydrogen New Energy Soc, Vol. 26, No. 1, 2015, pp. 1-7, doi: https://doi.org/10.7316/KHN ES.2015.26.1.001.
  5. J. An and Y. N. Chun, "Partial oxidation reformer in a plasma-recuperative burner", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 1, 2021, pp. 68-76, doi: https://doi.org/10.7316/KHNES.2021.32.1.68.
  6. X. Tao, F. Qi, Y. Yin, and X. Dai, "CO2 reforming of CH4 by combination of thermal plasma and catalyst", International Journal of Hydrogen Energy, Vol. 33, No. 4, 2008, pp. 1262-1265, doi: https://doi.org/10.1016/j.ijhydene.2007.12.057.
  7. X. Tao, M. Bai, X. Li, H. Long, S. Shang, Y. Yin, and X. Dai, "CH4-CO2 reforming by plasma - challenges and opportunities", Progress in Energy and Combustion Science, Vol. 37, No. 2, 2011, pp.113-124, doi: https://doi.org/10.1016/j.pecs.2010.05.001.
  8. A. R. da Costa Labanca, "Carbon black and hydrogen pro duction process analysis", International Journal of Hydrogen Energy, Vol. 45, No. 47, 2020, pp. 25698-25707, doi: https://doi.org/10.1016/j.ijhydene.2020.03.081.
  9. K. S. Kim, J. H. Seo, J. S. Nam, W. T. Ju, and S. H. Hong, "Production of hydrogen and carbon black by methane decomposition using DCRF hybrid thermal plasmas", IEEE Transactions on Plasma Science, Vol. 33, No. 2, 2005, pp. 813-823, doi: https://doi.org/10.1109/TPS.2005.844526.
  10. L. Fulcheri, F. Fabry, S. Takali, and V. Rohani, "Three-phase AC arc plasma systems: a review", Plasma Chemistry and Plasma Processing, Vol. 35, 2015, pp. 565-585, doi: https://doi.org/10.1007/s1109001596198.
  11. K. S. Kim, S. H. Hong, K. S. Lee, and W. T. Ju, "Continuous synthesis of nanostructured sheetlike carbons by thermal plasma decomposition of methane", IEEE Transactions on Plasma Science, Vol. 35, No. 2, 2007, pp. 434-443, doi: https://doi.org/10.1109/TPS.2007.892556.
  12. A. A. Safronov, O. B. Vasilieva, J. D. Dudnik, V. E. Kuznetsov, V. N. Shiryaev, D. I. Subbotin, and A. V. Pavlov, "Investigation of the AC plasma torch working conditions for the plasma chemical applications", Journal of Physics: Conference Series, Vol. 825, 2017, pp. 012013, doi: https://doi.org/10.1088/17426596/825/1/012013.
  13. S. Takali, F. Fabry, V. Rohani, F. Cauneau, and L. Fulcheri, "Development of a 100 kW plasma torch for plasma assisted combustion of low heating value fuels", Journal of Physics: Conference Series, Vol. 550, 2014, pp. 012018, doi: https://doi.org/10.1088/17426596/550/1/012018.
  14. C. Rehmet, V. Rohani, F. Cauneau, and L. Fulcheri, "3D unsteady state MHD modeling of a 3phase AC hot graphite electrodes plasma torch", Plasma Chemistry and Plasma Processing, Vol. 33, 2013, pp. 491-515, doi: https://doi.org/10.1007/s1109001394388.
  15. A. V. Surov, S. D. Popov, V. E. Popov, D. I. Subbotin, E. O. Serba, V. A. Spodobin, Gh. V. Nakonechny, and A. V. Pavlov, "Multigas AC plasma torches for gasification of organic substances", Fuel, Vol. 203, 2017, pp. 1007-1014, doi: https://doi.org/10.1016/j.fuel.2017.02.104.
  16. Y. Liu, M. Tanaka, T. Ikeba, S. Choi, and T. Watanabe, "Fluctuation measurement of multiphase AC arc and inflight particle temperature", Journal of Chemical Engineering of Japan, Vol. 46, No. 10, 2013, pp. 672-676, doi: https://doi.org/10.1252/jcej.13we098.
  17. M. I. Boulos, P. Fauchais, and E. Pfender, "Thermal Plasmas: Fundamentals and Applications," Vol. 1, Plenum Press, USA, 1994, p. 413, doi: https://doi.org/10.1007/9781489913371.
  18. H. K. Myong, "Computational Fluid Dynamics", Munundang, Korea, 2015, pp. 194-243.