DOI QR코드

DOI QR Code

Understanding the Biomechanical Factors Related to Successful Balance Recovery and Falls: A Literature Review

  • Junwoo Park (Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University) ;
  • Jongwon Choi (Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University) ;
  • Woochol Joseph Choi (Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University)
  • Received : 2023.01.31
  • Accepted : 2023.02.02
  • Published : 2023.02.20

Abstract

Background: Despite fall prevention strategies suggested by researchers, falls are still a major health concern in older adults. Understanding factors that differentiate successful versus unsuccessful balance recovery may help improve the prevention strategies. Objects: The purpose of this review was to identify biomechanical factors that differentiate successful versus unsuccessful balance recovery in the event of a fall. Methods: The literature was searched through Google Scholar and PubMed. The following keywords were used: 'falls,' 'protective response,' 'protective strategy,' 'automated postural response,' 'slips,' 'trips,' 'stepping strategy,' 'muscle activity,' 'balance recovery,' 'successful balance recovery,' and 'failed balance recovery.' Results: A total of 64 articles were found and reviewed. Most of studies included in this review suggested that kinematics during a fall was important to recover balance successfully. To be successful, appropriate movements were required, which governed by several things depending on the direction and characteristics of the fall. Studies also suggested that lower limb muscle activity and joint moments were important for successful balance recovery. Other factors associated with successful balance recovery included fall direction, age, appropriate protective strategy, overall health, comorbidity, gait speed, sex and anticipation of the fall. Conclusion: This review discusses biomechanical factors related to successful versus unsuccessful balance recovery to help understand falls. Our review should help guide future research, or improve prevention strategies in the area of fall and injuries in older adults.

Keywords

Acknowledgement

This work was supported, in part, by the "Brain Korea 21 FOUR Project", the National Research Foundation of Korea (Award number: F21SH8303039) for Department of Physical Therapy in the Graduate School of Yonsei University, and by the "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2022RIS-005).

References

  1. Burns ER, Haddad YK, Parker EM. Primary care providers' discussion of fall prevention approaches with their older adult patients-DocStyles, 2014. Prev Med Rep 2018;9:149-52. https://doi.org/10.1016/j.pmedr.2018.01.016
  2. Bergen G, Stevens MR, Burns ER. Falls and fall injuries among adults aged ≥65 years - United States, 2014. MMWR Morb Mortal Wkly Rep 2016;65(37):993-8. https://doi.org/10.15585/mmwr.mm6537a2
  3. Lee S, Kim S, Lim K, Choi WJ. The literature review on the effectiveness of fall-related hip fracture prevention programs. Phys Ther Korea 2021;28(1):1-12. https://doi.org/10.12674/ptk.2021.28.1.1
  4. Qu X, Hu X, Lew FL. Differences in lower extremity muscular responses between successful and failed balance recovery after slips. Int J Ind Ergon 2012;42(5):499-504. https://doi.org/10.1016/j.ergon.2012.08.003
  5. Qu X, Xie Y, Hu X, Zhang H. Effects of fatigue on balance recovery from unexpected trips. Hum Factors 2020;62(6):919-27. https://doi.org/10.1177/0018720819858794
  6. Lew FL, Qu X. Effects of multi-joint muscular fatigue on biomechanics of slips. J Biomech 2014;47(1):59-64. https://doi.org/10.1016/j.jbiomech.2013.10.010
  7. Gosine P, Komisar V, Novak AC. A kinematic analysis of balance recovery following an unexpected forward balance loss during stair descent. Appl Ergon 2021;92:103317.
  8. Gosine P, Komisar V, Novak AC. Characterizing the demands of backward balance loss and fall recovery during stair descent to prevent injury. Appl Ergon 2019;81:102900.
  9. Marigold DS, Bethune AJ, Patla AE. Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion. J Neurophysiol 2003;89(4):1727-1737. https://doi.org/10.1152/jn.00683.2002
  10. Brodie MA, Okubo Y, Sturnieks DL, Lord SR. Optimizing successful balance recovery from unexpected trips and slips. J Biomech Sci Eng 2018;13(4):17-00558-17-00558. https://doi.org/10.1299/jbse.17-00558
  11. Owings TM, Pavol MJ, Grabiner MD. Mechanisms of failed recovery following postural perturbations on a motorized treadmill mimic those associated with an actual forward trip. Clin Biomech (Bristol, Avon) 2001;16(9):813-819. https://doi.org/10.1016/S0268-0033(01)00077-8
  12. Hu X, Li Y, Chen G, Zhao Z, Qu X. Identification of balance recovery patterns after slips using hierarchical cluster analysis. J Biomech 2022;143:111281.
  13. Cham R, Redfern MS. Lower extremity corrective reactions to slip events. J Biomech 2001;34(11):1439-1445. https://doi.org/10.1016/S0021-9290(01)00116-6
  14. Brady RA, Pavol MJ, Owings TM, Grabiner MD. Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking. J Biomech 2000;33(7):803-808. https://doi.org/10.1016/S0021-9290(00)00037-3
  15. Hsiao ET, Robinovitch SN. Common protective movements govern unexpected falls from standing height. J Biomech 1998;31(1):1-9. https://doi.org/10.1016/S0021-9290(97)00114-0
  16. Maki BE, Edmondstone MA, McIlroy WE. Age-related differences in laterally directed compensatory stepping behavior. J Gerontol A Biol Sci Med Sci 2000;55(5):M270-7. https://doi.org/10.1093/gerona/55.5.M270
  17. Hsiao-Wecksler ET, Robinovitch SN. The effect of step length on young and elderly women's ability to recover balance. Clin Biomech (Bristol, Avon) 2007;22(5):574-80. https://doi.org/10.1016/j.clinbiomech.2007.01.013
  18. Weerdesteyn V, Laing AC, Robinovitch SN. The body configuration at step contact critically determines the successfulness of balance recovery in response to large backward perturbations. Gait Posture 2012;35(3):462-466. https://doi.org/10.1016/j.gaitpost.2011.11.008
  19. Ochi A, Yokoyama S, Abe T, Yamada K, Tateuchi H, Ichihashi N. Differences in muscle activation patterns during step recovery in elderly women with and without a history of falls. Aging Clin Exp Res 2014;26(2):213-20. https://doi.org/10.1007/s40520-013-0152-4
  20. Carty CP, Mills P, Barrett R. Recovery from forward loss of balance in young and older adults using the stepping strategy. Gait Posture 2011;33(2):261-7. https://doi.org/10.1016/j.gaitpost.2010.11.017
  21. Carbonneau E, Smeesters C. Effects of age and lean direction on the threshold of single-step balance recovery in younger, middle-aged and older adults. Gait Posture 2014;39(1):365-71. https://doi.org/10.1016/j.gaitpost.2013.08.013
  22. Hsiao ET, Robinovitch SN. Elderly subjects' ability to recover balance with a single backward step associates with body configuration at step contact. J Gerontol A Biol Sci Med Sci 2001;56(1):M42-7. https://doi.org/10.1093/gerona/56.1.M42
  23. Roelofs JMB, de Kam D, van der Zijden AM, Robinovitch SN, Weerdesteyn V. Effect of body configuration at step contact on balance recovery from sideways perturbations. Hum Mov Sci 2019;66:383-9. https://doi.org/10.1016/j.humov.2019.05.017
  24. Carty CP, Cronin NJ, Nicholson D, Lichtwark GA, Mills PM, Kerr G, et al. Reactive stepping behaviour in response to forward loss of balance predicts future falls in community-dwelling older adults. Age Ageing 2015;44(1):109-15. https://doi.org/10.1093/ageing/afu054
  25. Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the "change-in-support" strategy. Phys Ther 1997;77(5):488-507.
  26. Allum JH, Carpenter MG, Honegger F, Adkin AL, Bloem BR. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. J Physiol 2002;542(Pt 2):643-63. https://doi.org/10.1113/jphysiol.2001.015644
  27. Redfern MS, Cham R, Gielo-Perczak K, Gronqvist R, Hirvonen M, Lanshammar H, et al. Biomechanics of slips. Ergonomics 2001;44(13):1138-66. https://doi.org/10.1080/00140130110085547
  28. Mille ML, Johnson-Hilliard M, Martinez KM, Zhang Y, Edwards BJ, Rogers MW. One step, two steps, three steps more ... directional vulnerability to falls in community-dwelling older people. J Gerontol A Biol Sci Med Sci 2013;68(12):1540-8. https://doi.org/10.1093/gerona/glt062
  29. Batcir S, Shani G, Shapiro A, Alexander N, Melzer I. The kinematics and strategies of recovery steps during lateral losses of balance in standing at different perturbation magnitudes in older adults with varying history of falls. BMC Geriatr 2020;20(1):249.
  30. Bruijn SM, Sloot LH, Kingma I, Pijnappels M. Contribution of arm movements to balance recovery after tripping in older adults. J Biomech 2022;133:110981.
  31. Hilliard MJ, Martinez KM, Janssen I, Edwards B, Mille ML, Zhang Y, et al. Lateral balance factors predict future falls in community-living older adults. Arch Phys Med Rehabil 2008; 89(9):1708-13. https://doi.org/10.1016/j.apmr.2008.01.023
  32. Fujimoto M, Bair WN, Rogers MW. Single and multiple step balance recovery responses can be different at first step liftoff following lateral waist-pull perturbations in older adults. J Biomech 2017;55:41-7. https://doi.org/10.1016/j.jbiomech.2017.02.014
  33. Pijnappels M, Kingma I, Wezenberg D, Reurink G, van Dieen JH. Armed against falls: the contribution of arm movements to balance recovery after tripping. Exp Brain Res 2010;201(4):689-99. https://doi.org/10.1007/s00221-009-2088-7
  34. Cheng KB, Wang KM, Kuo SY. Role of arm motion in feet-inplace balance recovery. J Biomech 2015;48(12):3155-62. https://doi.org/10.1016/j.jbiomech.2015.07.008
  35. Roos PE, McGuigan MP, Kerwin DG, Trewartha G. The role of arm movement in early trip recovery in younger and older adults. Gait Posture 2008;27(2):352-6. https://doi.org/10.1016/j.gaitpost.2007.05.001
  36. Borrelli JR, Zabukovec J, Jones S, Junod CA, Maki BE. Age-related changes in the capacity to select early-onset upper-limb reactions to either recover balance or protect against impact. Exp Gerontol 2019;125:110676.
  37. Borrelli J, Creath RA, Pizac D, Hsiao H, Sanders OP, Rogers MW. Perturbation-evoked lateral steps in older adults: why take two steps when one will do? Clin Biomech (Bristol, Avon) 2019;63:41-7. https://doi.org/10.1016/j.clinbiomech.2019.02.014
  38. McIlroy WE, Maki BE. Age-related changes in compensatory stepping in response to unpredictable perturbations. J Gerontol A Biol Sci Med Sci 1996;51(6):M289-96. https://doi.org/10.1093/gerona/51A.6.M289
  39. Pijnappels M, Bobbert MF, van Dieen JH. Contribution of the support limb in control of angular momentum after tripping. J Biomech 2004;37(12):1811-8. https://doi.org/10.1016/j.jbiomech.2004.02.038
  40. Pijnappels M, Bobbert MF, van Dieen JH. How early reactions in the support limb contribute to balance recovery after tripping. J Biomech 2005;38(3):627-34. https://doi.org/10.1016/j.jbiomech.2004.03.029
  41. Pijnappels M, Reeves ND, Maganaris CN, van Dieen JH. Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly. J Electromyogr Kinesiol 2008;18(2):188-96. https://doi.org/10.1016/j.jelekin.2007.06.004
  42. Weerdesteyn V, Laing AC, Robinovitch SN. Automated postural responses are modified in a functional manner by instruction. Exp Brain Res 2008;186(4):571-80. https://doi.org/10.1007/s00221-007-1260-1
  43. Chambers AJ, Cham R. Slip-related muscle activation patterns in the stance leg during walking. Gait Posture 2007;25(4):565-72. https://doi.org/10.1016/j.gaitpost.2006.06.007
  44. Sawers A, Pai YC, Bhatt T, Ting LH. Neuromuscular responses differ between slip-induced falls and recoveries in older adults. J Neurophysiol 2017;117(2):509-22. https://doi.org/10.1152/jn.00699.2016
  45. Ding L, Yang F. Muscle weakness is related to slip-initiated falls among community-dwelling older adults. J Biomech 2016;49(2):238-43. https://doi.org/10.1016/j.jbiomech.2015.12.009
  46. Graham DF, Carty CP, Lloyd DG, Lichtwark GA, Barrett RS. Muscle contributions to recovery from forward loss of balance by stepping. J Biomech 2014;47(3):667-74. https://doi.org/10.1016/j.jbiomech.2013.11.047
  47. Karamanidis K, Arampatzis A, Mademli L. Age-related deficit in dynamic stability control after forward falls is affected by muscle strength and tendon stiffness. J Electromyogr Kinesiol 2008;18(6):980-9. https://doi.org/10.1016/j.jelekin.2007.04.003
  48. Cronin NJ, Barrett RS, Lichtwark G, Mills PM, Carty CP. Decreased lower limb muscle recruitment contributes to the inability of older adults to recover with a single step following a forward loss of balance. J Electromyogr Kinesiol 2013;23(5):1139-44. https://doi.org/10.1016/j.jelekin.2013.05.012
  49. Mackey DC, Robinovitch SN. Mechanisms underlying agerelated differences in ability to recover balance with the ankle strategy. Gait Posture 2006;23(1):59-68. https://doi.org/10.1016/j.gaitpost.2004.11.009
  50. Thelen DG, Muriuki M, James J, Schultz AB, Ashton-Miller JA, Alexander NB. Muscle activities used by young and old adults when stepping to regain balance during a forward fall. J Electromyogr Kinesiol 2000;10(2):93-101. https://doi.org/10.1016/S1050-6411(99)00028-0
  51. Carty CP, Barrett RS, Cronin NJ, Lichtwark GA, Mills PM. Lower limb muscle weakness predicts use of a multiple- versus single-step strategy to recover from forward loss of balance in older adults. J Gerontol A Biol Sci Med Sci 2012;67(11):1246-52. https://doi.org/10.1093/gerona/gls149
  52. Hwang S, Tae K, Sohn R, Kim J, Son J, Kim Y. The balance recovery mechanisms against unexpected forward perturbation. Ann Biomed Eng 2009;37(8):1629-37. https://doi.org/10.1007/s10439-009-9717-y
  53. Addison O, Inacio M, Bair WN, Beamer BA, Ryan AS, Rogers MW. Role of hip abductor muscle composition and torque in protective stepping for lateral balance recovery in older adults. Arch Phys Med Rehabil 2017;98(6):1223-8. https://doi.org/10.1016/j.apmr.2016.10.009
  54. Graham DF, Carty CP, Lloyd DG, Barrett RS. Biomechanical predictors of maximal balance recovery performance amongst community-dwelling older adults. Exp Gerontol 2015;66:39-46. https://doi.org/10.1016/j.exger.2015.04.006
  55. Bento PC, Pereira G, Ugrinowitsch C, Rodacki AL. Peak torque and rate of torque development in elderly with and without fall history. Clin Biomech (Bristol, Avon) 2010;25(5):450-4. https://doi.org/10.1016/j.clinbiomech.2010.02.002
  56. Hiller CE, Refshauge KM, Herbert RD, Kilbreath SL. Balance and recovery from a perturbation are impaired in people with functional ankle instability. Clin J Sport Med 2007;17(4):269-75. https://doi.org/10.1097/JSM.0b013e3180f60b12
  57. Handelzalts S, Steinberg-Henn F, Levy S, Shani G, Soroker N, Melzer I. Insufficient balance recovery following unannounced external perturbations in persons with stroke. Neurorehabil Neural Repair 2019;33(9):730-9. https://doi.org/10.1177/1545968319862565
  58. Levinger P, Nagano H, Downie C, Hayes A, Sanders KM, Cicuttini F, et al. Biomechanical balance response during induced falls under dual task conditions in people with knee osteoarthritis. Gait Posture 2016;48:106-12. https://doi.org/10.1016/j.gaitpost.2016.04.031
  59. Salot P, Patel P, Bhatt T. Reactive balance in individuals with chronic stroke: biomechanical factors related to perturbationinduced backward falling. Phys Ther 2016;96(3):338-47. https://doi.org/10.2522/ptj.20150197
  60. Schulz BW, Ashton-Miller JA, Alexander NB. Compensatory stepping in response to waist pulls in balance-impaired and unimpaired women. Gait Posture 2005;22(3):198-209. https://doi.org/10.1016/j.gaitpost.2004.09.004
  61. Wojcik LA, Thelen DG, Schultz AB, Ashton-Miller JA, Alexander NB. Age and gender differences in single-step recovery from a forward fall. J Gerontol A Biol Sci Med Sci 1999;54(1):M44-50. https://doi.org/10.1093/gerona/54.1.M44
  62. Karamanidis K, Arampatzis A. Age-related degeneration in leg-extensor muscle-tendon units decreases recovery performance after a forward fall: compensation with running experience. Eur J Appl Physiol 2007;99(1):73-85. https://doi.org/10.1007/s00421-006-0318-2
  63. Madigan ML, Lloyd EM. Age-related differences in peak joint torques during the support phase of single-step recovery from a forward fall. J Gerontol A Biol Sci Med Sci 2005;60(7):910-4. https://doi.org/10.1093/gerona/60.7.910
  64. Madigan ML, Lloyd EM. Age and stepping limb performance differences during a single-step recovery from a forward fall. J Gerontol A Biol Sci Med Sci 2005;60(4):481-5. https://doi.org/10.1093/gerona/60.4.481
  65. Wojcik LA, Thelen DG, Schultz AB, Ashton-Miller JA, Alexander NB. Age and gender differences in peak lower extremity joint torques and ranges of motion used during single-step balance recovery from a forward fall. J Biomech 2001;34(1):67-73. https://doi.org/10.1016/S0021-9290(00)00152-4
  66. Mille ML, Johnson ME, Martinez KM, Rogers MW. Age-dependent differences in lateral balance recovery through protective stepping. Clin Biomech (Bristol, Avon) 2005;20(6):607-16. https://doi.org/10.1016/j.clinbiomech.2005.03.004
  67. Pavol MJ, Runtz EF, Edwards BJ, Pai YC. Age influences the outcome of a slipping perturbation during initial but not repeated exposures. J Gerontol A Biol Sci Med Sci 2002;57(8): M496-503. https://doi.org/10.1093/gerona/57.8.M496
  68. Jayadas A, Smith JL. Identification of effective and ineffective reactive movements when attempting to recover from a slippery perturbation. Clin Res Orthop 2019;3:1.
  69. Pater ML, Rosenblatt NJ, Grabiner MD. Expectation of an upcoming large postural perturbation influences the recovery stepping response and outcome. Gait Posture 2015;41(1):335-7. https://doi.org/10.1016/j.gaitpost.2014.10.026
  70. Bhatt T, Wening JD, Pai YC. Influence of gait speed on stability: recovery from anterior slips and compensatory stepping. Gait Posture 2005;21(2):146-56. https://doi.org/10.1016/j.gaitpost.2004.01.008
  71. Liu X, Reschechtko S, Wang S, Pai YC. The recovery response to a novel unannounced laboratory-induced slip: the "first trial effect" in older adults. Clin Biomech (Bristol, Avon) 2017;48:9-14. https://doi.org/10.1016/j.clinbiomech.2017.06.004
  72. Hwang JH, Lee YT, Park DS, Kwon TK. Age affects the latency of the erector spinae response to sudden loading. Clin Biomech (Bristol, Avon) 2008;23(1):23-9. https://doi.org/10.1016/j.clinbiomech.2007.09.002
  73. Barrett RS, Cronin NJ, Lichtwark GA, Mills PM, Carty CP. Adaptive recovery responses to repeated forward loss of balance in older adults. J Biomech 2012;45(1):183-7. https://doi.org/10.1016/j.jbiomech.2011.10.005
  74. Schillings AM, Mulder T, Duysens J. Stumbling over obstacles in older adults compared to young adults. J Neurophysiol 2005;94(2):1158-68. https://doi.org/10.1152/jn.00396.2004
  75. Bair WN, Prettyman MG, Beamer BA, Rogers MW. Kinematic and behavioral analyses of protective stepping strategies and risk for falls among community living older adults. Clin Biomech (Bristol, Avon) 2016;36:74-82. https://doi.org/10.1016/j.clinbiomech.2016.04.015
  76. Sturnieks DL, Menant J, Vanrenterghem J, Delbaere K, Fitzpatrick RC, Lord SR. Sensorimotor and neuropsychological correlates of force perturbations that induce stepping in older adults. Gait Posture 2012;36(3):356-60. https://doi.org/10.1016/j.gaitpost.2012.03.007
  77. Nevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. The study of Osteoporotic Fractures Research Group. J Am Geriatr Soc 1993;41(11):1226-34. https://doi.org/10.1111/j.1532-5415.1993.tb07307.x