DOI QR코드

DOI QR Code

뇌파분석을 이용한 음악이 학습활동에 미치는 영향에 대한 고찰

A Review on Correlation between Music and Learning Activity Using EEG Signal Analysis

  • 투고 : 2023.02.01
  • 심사 : 2023.04.17
  • 발행 : 2023.04.30

초록

본 논문에서는 기본적으로 음악 청각자극이 학습활동에 어떤 영향을 미치게 되는지를 뇌파를 통하여 분석하였다. 음악적 청각자극은 진정성향과 자극성향 그리고 선호음악과 비선호음악으로 나누어서 실험을 하였고, 학습활동 과제는 수학과제와 암기과제로 구분하여 실험하였다. 뇌파 실험에서 계측한 데이터는 인간의 집중과 관련이 있는 것으로 알려진 SMR파의 파워 스펙트럼으로 분석하여 정량적 비교에 활용하였다. 본 논문의 결과에서는, 음악이 자극으로 주어진 경우가 주어지지 않은 경우보다 파워가 크게 관측되었고, 과제의 유형과 관계없이 진정성향의 경우가 자극성향의 경우보다 뇌파의 파워가 더 크게 관측되었으며, 선호음악의 경우가 비선호음악의 경우보다 뇌파의 파워가 더 크게 관측되었다. 이들 결과로부터 음악 청각자극이 있는 경우, 진정성향의 음악의 경우, 선호음악의 경우가 상대적 경우보다 집중력을 높일 수 있을 것으로 추정한다.

In this paper, we analyzed through the EEG signals how musical stimulus affects learning activities. Musical stimuli were divided into sedative and stimulative tendency music, preferred and non-preferred music, and the learning activity tasks were divided into mathematics tasks and memorization tasks. The signals measured in the EEG experiments were analyzed with the power spectrum of SMR waves known to be related to human concentration. Those spectra used for quantitative comparison in this paper. As a result the power of the EEG signals was observed to be greater than the case where music was given as a stimulus. Regardless of the type of task, the power of the EEG signals was observed to be greater in the case of sedative tendency than in the case of stimulative tendency, and the power of the EEG signals was observed to be greater in the case of favorite music than in the case of unfavorite music. From these results, it is estimated that if the musical stimulus exists, in the case of sedative tendency music, and in the case of favorite music, concentration can be increased than in the relative case.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음

참고문헌

  1. Y. Jung and Y. Jang, "Statistical Analysis of Brain Activity by Musical Stimulation," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 1, Feb. 2021, pp. 89-94.
  2. J. Seong and S. Lee, "Deriving AI-Based E-Learning and Personalized Education Methods to Improve Efficient Class Satisfaction in the Post-Covid-19 Environment Using Statistical Techniques," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, Dec. 2022, pp. 1213-1220.
  3. M. A. Gregoire, "Music as prior condition to task performance," J. of Music Therapy, vol. 21, no. 3, 1984, pp. 133-145. https://doi.org/10.1093/jmt/21.3.133
  4. S. Hong and H. Kim, "The Effects of Meditation Music Programs on Attention and Learning Attitudes among College Students," J. of Educational Studies, vol. 41, no. 1, Apr. 2010, pp. 27-44.
  5. M. Lee, "Study of Attention Difference on Music Beats," Conf. of The Korean Entertainment Industry Association, Chuncheon, Korea, Nov. 2015, pp. 55-58.
  6. G. Choi, "The Correlation between Listening to Classical Music and the Reading Comprehension of Korean Texts -Using Mozart as Background Music-," J. of Korean Language and Literature Education, vol. 36, no. 0, Dec. 2015, pp. 309-335. https://doi.org/10.17313/jkorle.2015..36.309
  7. J. S. Jenkins, "The Mozart effect," J. of the Royal Society of Medicine, vol. 94, no. 4, 2001, pp. 170-172. https://doi.org/10.1177/014107680109400404
  8. K. Schulze and S. Koelsch, "Working memory for speech and music," Annals of the New York Academy and Sciences, vol. 1252, issue 1, 2012, pp. 229-236. https://doi.org/10.1111/j.1749-6632.2012.06447.x
  9. M. Yamagishi, S. Takigami, M. Sakakibara, Y. Fujito, and K. Lukowiak, "The Yerkes-Dodson law and appropriate stimuli for conditioned taste aversion in Lymnaea," J. of Experimental Biololgy, vol. 218, issue 3, 2015, pp. 336-339.
  10. E. T. Gaston, Music in therapy. New York: Macmillan, 1968.
  11. M. K. Stein, M. S. Smith, M. A. Henningsen, and E. S. Silver, Implementing Standards-Based Mathematics Instruction. Virginia: Reston, 2000.