Acknowledgement
본 연구는 한국에너지기술연구원의 기본사업(C2-2480, C3-2421)을 재원으로 수행한 연구과제의 결과입니다. 또한, 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(연구개발과제번호: 20010853)에 의한 연구입니다.
References
- Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L. and Spencer, T., "Net Zero by 2050: A Roadmap for the Global Energy Sector," (2021).
- Castro, J., Fraile, D., Barth, F., Vanhoudt, W., Altmann, M. and Weindorf, W., "Technical Report on the Definition of 'CertifHy Green'Hydrogen," Brussels, Belgium 26 October, 2015(2015).
- Dipu, A. L., "Methane Decomposition Into COx-free Hydrogen Over a Ni-based Catalyst: An Overview," Int. J. Energy Res., 45(7), 9858-9877(2021). https://doi.org/10.1002/er.6541
- Qian, J. X., Chen, T. W., Enakonda, L. R., Liu, D. B., Basset, J. M., and Zhou, L., "Methane Decomposition to Pure Hydrogen and Carbon Nano Materials: State-of-the-art and Future Perspectives," Int. J. Hydrog. Energy, 45(32), 15721-15743(2020). https://doi.org/10.1016/j.ijhydene.2020.04.100
- Dufour, J., Galvez, J. L., Serrano, D. P., Moreno, J. and Martinez, G., "Life Cycle Assessment of Hydrogen Production by Methane Decomposition Using Carbonaceous Catalysts," Int. J. Hydrog. Energy, 35(3), 1205-1212(2010). https://doi.org/10.1016/j.ijhydene.2009.11.093
- Dufour, J., Serrano, D. P., Galvez, J. L., Gonzalez, A., Soria, E., and Fierro, J. L., "Life Cycle Assessment of Alternatives for Hydrogen Production from Renewable and Fossil Sources," Int. J. Hydrog. Energy, 37(2), 1173-1183(2012). https://doi.org/10.1016/j.ijhydene.2011.09.135
- Net Zero by 2050 - Analysis - IEA, "https://www.iea.org/reports/net-zero-by-2050," (accessed November 16, 2022).
- Keipi, T., Tolvanen, K. E., Tolvanen, H. and Konttinen, J., "ThermoCatalytic Decomposition of Methane: The Effect of Reaction Parameters on Process Design and the Utilization Possibilities of the Produced Carbon," Energy Convers. Manag., 126, 923-934(2016). https://doi.org/10.1016/j.enconman.2016.08.060
- Keipi, T., Hankalin, V., Nummelin, J. and Raiko, R., "Technoeconomic Analysis of Four Concepts for Thermal Decomposition of Methane: Reduction of CO2 Emissions in Natural Gas Combustion," Energy Convers. Manag., 110, 1-12(2016). https://doi.org/10.1016/j.enconman.2015.11.057
- Global CNT Materials Market Size, Manufacturers, Supply Chain, Sales Channel and Clients, 2022-2028 "https://www.market-research.com/QYResearch-Group-v3531/Global-CNT-Materials-Size-Manufacturers-32048577/," (accessed January 2, 2023).
- Daloz, W., Scheiff, F., Ehrhardt, K., Flick, D. and Bode, A., "The Quest for CO2-free Hydrogen-methane Pyrolysis at Scale," US DOE ARPA-E Methane Cohort Kickoff (2019).
- Schneider, S., Bajohr, S., Graf, F. and Kolb, T., "State of the Art of Hydrogen Production via Pyrolysis of Natural Gas," ChemBioEng Rev., 7(5), 150-158(2020). https://doi.org/10.1002/cben.202000014
- Upham, D. C., Agarwal, V., Khechfe, A., Snodgrass, Z. R., Gordon, M. J., Metiu, H. and McFarland, E. W., "Catalytic Molten Metals for the Direct Conversion of Methane to Hydrogen and Separable Carbon," Science., 358(6365), 917-921(2017). https://doi.org/10.1126/science.aao5023
- Bode, A., Anderlohr, C., Bernnat, J., Flick, F., Glenk, F., Klingler, D. and Munera-Parra, A. "Solids and Fluid Products from Gas-FfPaG, Final Report," BMBF FKZ 033RC1301 AG. Bundesministerium fur Bildung und Forschung, Bonn (2018).
- A. Abanades, T. G. Geissler, T. Wetzel. Patent WO2019/154732 A1(2019).
- A. Abanades, T. G. Geissler, T. Wetzel. Patent EP3521241 A1(2019).
- Gaudernack, B. and Lynum, S., "Hydrogen from Natural Gas Without Release of CO2 to the Atmosphere," Int. J. Hydrog. Energy, 23(12), 1087-1093(1998). https://doi.org/10.1016/S0360-3199(98)00004-4
- Pohlenz, J. B. and Scott, N. H., "Method for Hydrogen Production by Catalytic Decomposition of a Gaseous Hydrocarbon Stream," U.S. Patent No. 3,284,161(1966).
- Muradov, N., "Thermocatalytic CO2-Free Production of Hydrogen and Carbon from Hydrocarbon Fuels," Proceedings of the 2000 Hydrogen Program Review, May, California(2000).
- Muradov, N., Chen, Z. and Smith, F., "Fossil Hydrogen with Reduced CO2 Emission: Modeling Thermocatalytic Decomposition of Methane in a Fluidized Bed of Carbon Particles," Int. J. Hydrog. Energy, 30(10), 1149-1158(2005). https://doi.org/10.1016/j.ijhydene.2005.04.005
- Cornejo, A., Lu, H. and Chua, H. T., "A Process of Controlling the Morphology of Graphite," Patent AU-2016312962-B2(2019).
- Cornejo, A. and Chua, H. T., "Process for Producing Hydrogen and Graphitic Carbon from Hydrocarbons," U.S. Patent No. 11,505,458(2022).
- https://hazergroup.com.au/.
- https://hazer.wpmudev.host/about/#hazerprocess.
- Hwang, B., Ngo, S. I., Lim, Y. I., Seo, M. W., Park, S. J., Ryu, H. J. and Lee, D., "Reaction Characteristics of Ni-Based Catalyst Supported by Al2O3 in a Fluidized Bed for CO2 Methanation," Catalysts, 12(11), 1346(2022).
- Kim, S. W., "Effect of Height on CNT Aggregates Size and Shape in Freeboard Region of a Fluidized Bed," Korean Chem. Eng. Res., 57(1), 105-110(2019).
- Park, S., "Fluidization Characteristics in Fluidized Bed Reactors Operated in Subatmospheric Pressure," Korean Chem. Eng. Res., 58(2), 307-312(2020).
- Park, S. H. and Kim, S. W., "Characteristics of Heat Absorption by Gas in a Directly-irradiated Fluidized Bed Particle Receiver," Korean Chem. Eng. Res., 59(2), 239-246(2021).
- Go, E. S., Kang, S. Y., Seo, S. B., Kim, H. W. and Lee, S. H., "Slug Characteristics in a Bubbling Fluidized Bed Reactor for Polymerization Reaction," Korean Chem. Eng. Res., 58(4), 651-657(2020).
- Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T. and Smalley, R. E., "Single-wall Nanotubes Produced by Metal-catalyzed Disproportionation of Carbon Monoxide," Chem. Phys. Lett., 260(3-4), 471-475(1996) https://doi.org/10.1016/0009-2614(96)00862-7
- Kumar, M. and Ando, Y., "Chemical Vapor Deposition of Carbon Nanotubes: a Review on Growth Mechanism and Mass Production," J. Nanosci. Nanotechnol., 10(6), 3739-3758(2010). https://doi.org/10.1166/jnn.2010.2939
- Azam, M. A., Manaf, N. S. A., Talib, E. and Bistamam, M. S. A., "Aligned Carbon Nanotube from Catalytic Chemical Vapor Deposition Technique for Energy Storage Device: a Review," Ionics., 19(11), 1455-1476(2013). https://doi.org/10.1007/s11581-013-0979-x
- Schaper, A. K., Hou, H., Greiner, A. and Phillipp, F., "The Role of Iron Carbide in Multiwalled Carbon Nanotube Growth," J. Catal., 222(1), 250-254(2004). https://doi.org/10.1016/j.jcat.2003.11.011
- Lin, M., Tan, J. P. Y., Boothroyd, C., Loh, K. P., Tok, E. S. and Foo, Y. L., "Dynamical Observation of Bamboo-like Carbon Nanotube Growth," Nano Lett., 7(8), 2234-2238(2007). https://doi.org/10.1021/nl070681x
- Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H. and Homma, Y., "Atomic-scale in-situ Observation of Carbon Nanotube Growth from Solid State Iron Carbide Nanoparticles," Nano Lett., 8(7), 2082-2086(2008). https://doi.org/10.1021/nl080452q
- Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C. and Robertson, J., "In situ Observations of Catalyst Dynamics During Surface-bound Carbon Nanotube Nucleation," Nano Lett., 7(3), 602-608(2007). https://doi.org/10.1021/nl0624824
- Srilatha, K., Bhagawan, D., Kumar, S. S., and Himabindu, V., "Sustainable Fuel Production by Thermocatalytic Decomposition of Methane-A Review," S Afr J. Chem. Eng., 24, 156-167(2017).
- Urdiana, G., Valdez, R., Lastra, G., Valenzuela, M. A. and Olivas, A., "Production of Hydrogen and Carbon Nanomaterials Using Transition Metal Catalysts Through Methane Decomposition," Mater. Lett., 217, 9-12(2018). https://doi.org/10.1016/j.matlet.2018.01.033
- Donphai, W., Phichairatanaphong, O., Klysubun, W. and Chareonpanich, M., "Hydrogen and Carbon Allotrope Production Through Methane Cracking over Ni/bimodal Porous Silica Catalyst: Effect of Nickel Precursor," Int. J. Hydrog. Energy, 43(48), 21798-21809(201). https://doi.org/10.1016/j.ijhydene.2018.10.049
- Meshkani, F., Rezaei, M. and Rastegarpanah, A., "Preparation and Improvement of Nickel Catalyst Supported Ordered Mesoporous Spherical Silica for Thermocatalytic Decomposition of Methane," J. Energy Inst., 93(6), 2488-2496(2020). https://doi.org/10.1016/j.joei.2020.08.007
- Rategarpanah, A., Meshkani, F., Wang, Y., Arandiyan, H. and Rezaei, M., "Thermocatalytic Conversion of Methane to Highly Pure Hydrogen over Ni-Cu/MgO.Al2O3 Catalysts: Influence of Noble Metals (Pt and Pd) on the Catalytic Activity and Stability," Energy Convers. Manag., 166, 268-280(2018). https://doi.org/10.1016/j.enconman.2018.04.033
- Pudukudy, M., Yaakob, Z., Kadier, A., Takriff, M. S. and Hassan, N. S. M., "One-pot Sol-gel Synthesis of Ni/TiO2 Catalysts for Methane Decomposition Into COx Free Hydrogen and Multi-walled Carbon Nanotubes," Int. J. Hydrog. Energy, 42(26), 16495-16513(2017). https://doi.org/10.1016/j.ijhydene.2017.04.223
- Xu, M., Lopez-Ruiz, J. A., Kovarik, L., Bowden, M. E., Davidson, S. D., Weber, R. S., Wang, I. W., Hu, J. and Dagle, R. A., "Structure Sensitivity and Its Effect on Methane Turnover and Carbon Coproduct Selectivity in Thermocatalytic Decomposition of Methane over Supported Ni Catalyst," Appl. Catal. A: Gen., 611, 117967(2021).
- Gao, B., Wang, I. W., Ren, L., Haines, T. and Hu, J., "Catalytic Performance and Reproducibility of Ni/Al2O3 and Co/Al2O3 Mesoporous Aerogel Catalysts for Methane Decomposition," Ind. Eng. Chem. Res., 58(2), 798-807(2018). https://doi.org/10.1021/acs.iecr.8b04223
- Manasa, K., Naresh, G., Kalpana, M., Sasikumar, B., Velisoju, V. K., Chary, K. V., Michalkiewicz, B. and Venugopal, A., "Improved H2 Yields over Rice Husk Derived SiO2 Nanoparticles Supported Ni Catalyst During Non-oxidative Methane Cracking," J. Energy Inst., 99, 73-81(2021). https://doi.org/10.1016/j.joei.2021.08.005
- Torres, D., Pinilla, J. L. and Suelves, I., "Screening of Ni-Cu Bimetallic Catalysts for Hydrogen and Carbon Nanofilaments Production via Catalytic Decomposition of Methane," Appl. Catal. A: Gen., 559, 10-19(2018). https://doi.org/10.1016/j.apcata.2018.04.011
- Esteves, L. M., Daas, A. A., Oliveira, H. A. and Passos, F. B., "Influence of Space Velocity and Catalyst Pretreatment on COx Free Hydrogen and Carbon Nanotubes Production over CoMo/MgO Catalyst," Int. J. Hydrog. Energy, 45(51), 27299-27311(2020). https://doi.org/10.1016/j.ijhydene.2020.07.133
- Khan, U. M., Sarmad, Q., Anwar, M., Khoja, A. H., SA, M. A., Khan, Z. S., Hassan, M. and Shakir, S., "Synthesis of Cobalt Loaded Double Perovskite Sr2TiFeO6-δ (STF) as a Stable Catalyst for Enhanced Hydrogen Production via Methane Decomposition," Int. J. Energy Res., 45(14), 20073-20088(2021). https://doi.org/10.1002/er.7084
- Ko, D. H., Kang, S. C., Lee, C. W. and Im, J. S., "Effects of Support Porosity of Co-Mo/MgO Catalyst on Methane Catalytic Decomposition for Carbon and Hydrogen Production," J. Ind. Eng. Chem., 112(25), 162-170(2022). https://doi.org/10.1016/j.jiec.2022.05.008
- Kludpantanapan, T., Rattanaamonkulchai, R., Srifa, A., Koo-Amornpattana, W., Chaiwat, W., Sakdaronnarong, C., Charinpanitkul, T., Assabumrungrat, S., Wongsakulphasatch, S., Aieamsam-Aung, P., Watanabe, R., Fukuhara, C. and Ratchahat, S., "Development of CoMo-X Catalysts for Production of H2 and CNTs from Biogas by Integrative Process," J. Environ. Chem. Eng., 10(4), 107901(2022).
- Aieamsam-Aung, P., Nantapong, P., Rattanaamonkulchai, R., Kludpantanapan, T., Srifa, A., Koo-Amornpattana, W., Sakdaronnarong, C., Suchamalawong, P., Reubroycharoen, P., Kiatphuengporn, S., Charinpanitkul, T., Assabumrungrat, S., Wongsakulphasatch, S., Eiad-ua, A., Watanabe, R., Fukuhara, C. and Ratchahat, S., "Effect of CoMo Metal Loading on H2 and CNTs Production From Biogas by Integrative Process," Int. J. Hydrog. Energy, 47(98), 41444-41460(2022). https://doi.org/10.1016/j.ijhydene.2022.05.216
- Esteves, L. M., Oliveira, H. A., Xing, Y. and Passos, F. B., "Cobalt Supported on Carbon Nanotubes for Methane Chemical Vapor Deposition for the Production of New Carbon Nanotubes," New J. Chem., 45(31), 14218-14226(2021). https://doi.org/10.1039/D1NJ02442F
- Shah, M., Al Mesfer, M. K. and Danish, M., "Facile Synthesis of Co-Rh Bimetallic Catalysts for Methane Decomposition: Effect of Support Morphology," Fuel, 330, 125596(2022).
- Lobiak, E. V., Kuznetsova, V. R., Flahaut, E., Okotrub, A. V. and Bulusheva, L. G., "Effect of Co-Mo Catalyst Preparation and CH4/H2 Flow on Carbon Nanotube Synthesis," Fuller Nanotub. Car. N., 28(9), 707-715(2020). https://doi.org/10.1080/1536383X.2020.1749051
- Calgaro, C. O. and Perez-Lopez, O. W., "Graphene and Carbon Nanotubes by CH4 Decomposition over CoAl Catalysts," Mater. Chem. Phys., 226, 6-19(2019). https://doi.org/10.1016/j.matchemphys.2018.12.094
- Henao, W., Cazana, F., Tarifa, P., Romeo, E., Latorre, N., Sebastian, Delgado, J. J. and Monzon, A., "Selective Synthesis of Carbon Nanotubes by Catalytic Decomposition of Methane Using CoCu/cellulose Derived Carbon Catalysts: A Comprehensive Kinetic Study," Chem. Eng. J., 404, 126103(2021).
- Park, S. J., Kim, K. D., Park, Y. S., Go, K. S., Kim, W., Kim, M., Nho, N. S. and Lee, D. H., "Effect of Reduction Conditions of Mo-Fe/MgO on the Formation of Carbon Nanotube in Catalytic Methane Decomposition," J. Ind. Eng. Chem., 109, 384-396(2022). https://doi.org/10.1016/j.jiec.2022.02.023
- Azab, M. A., Awadallah, A. E., Aboul-Enein, A. A. and Hassan, S. A., "Single-step Synthesis of Graphene Nanosheets-carbon Nanotubes Hybrid Structure by Chemical Vapor Deposition of Methane Using Fe-Mo-MgO Catalysts," Fuller Nanotub. Car. N., 1-11(2022).
- Wang, I. W., Kutteri, D. A., Gao, B., Tian, H. and Hu, J., "Methane Pyrolysis for Carbon Nanotubes and COx-free H2 over Transition-metal Catalysts," Energy Fuels, 33(1), 197-205(2018). https://doi.org/10.1021/acs.energyfuels.8b03502
- Alcazar, H. E., Chire, E., Vargas, M. M., Villagarcia, B. L., Neira, J., Contin, A. and Alcazar, L. O., "Production and Characterization of Carbon Nanotubes by Methane Decomposition over Ni-Fe/Al2O3 Catalyst and Its Application as Nanofillers in Polypropylene Matrix," Mater. Res. Express., 8(11), 115001(2021).
- Yan, P., Zhang, K. and Peng, Y., "Study of Fe2O3-Al2O3 Catalyst Reduction Parameters and Conditions for Catalytic Methane Decomposition," Chem. Eng. Sci., 250, 117410(2022).
- El-Ahwany, O. M., Awadallah, A. E., Aboul-Enein, A. A., Abdel-Azim, S. M., Aboul-Gheit, N. A. and Abo-EL-Enein, S. A., "Dual Growth of Graphene Nanoplatelets and Carbon Nanotubes Hybrid Structure via Chemical Vapor Deposition of Methane over FeMgO Catalysts," Fuller Nanotub. Car. N., 28(6), 435-445(2020). https://doi.org/10.1080/1536383X.2019.1697243
- Tezel, E., Figen, H. E. and Baykara, S. Z., "Hydrogen Production by Methane Decomposition Using Bimetallic Ni-Fe Catalysts," Int. J. Hydrog., 44(20), 9930-9940(2019). https://doi.org/10.1016/j.ijhydene.2018.12.151
- Kutteri, D. A., Wang, I. W., Samanta, A., Li, L. and Hu, J., "Methane Decomposition to Tip and Base Grown Carbon Nanotubes and COx-free H2 over Mono-and Bimetallic 3d Transition Metal Catalysts," Catal. Sci. Technol., 8(3), 858-869(2018). https://doi.org/10.1039/C7CY01927K
- Gao, B., Wang, I. W., Ren, L. and Hu, J., "Catalytic Methane Decomposition over Bimetallic Transition Metals Supported on Composite Aerogel," Energy Fuels, 33(9), 9099-9106(2019). https://doi.org/10.1021/acs.energyfuels.9b01723
- Shen, Y., Ge, M. and Lua, A. C., "Deactivation of Bimetallic Nickel-copper Alloy Catalysts in Thermocatalytic Decomposition of Methane," Catal. Sci. Technol., 8(15), 3853-3862(2018). https://doi.org/10.1039/C8CY00339D
- Al Mesfer, M. K., Danish, M. and Shah, M., "Synthesis and Optimization of Hydrotalcite Derived Ni-Fe-Cu Based Catalysts for Catalytic Methane Decomposition Process Using the Design of Experiment Approach," J. Taiwan Inst. Chem. Eng., 128, 370-379(2021). https://doi.org/10.1016/j.jtice.2021.08.045
- Wang, P., Zhu, H., Huang, M., Wan, C., Li, D. and Jiang, L., "Catalytic Methane Decomposition to Hydrogen and Carbon over Hydrotalcite-derivative Composition-uniform and Sintering-resistant Ni-Fe/Al2O3 Alloy Catalysts," Int. J. Energy Res., 46(12), 16810-16822(2022). https://doi.org/10.1002/er.8349
- Torres, D., Pinilla, J. L. and Suelves, I., "Cobalt Doping of α-Fe/Al2O3 Catalysts for the Production of Hydrogen and High-quality Carbon Nanotubes by Thermal Decomposition of Methane," Int. J. Hydrog., 45(38), 19313-19323(2020). https://doi.org/10.1016/j.ijhydene.2020.05.104
- Ly, H. V., Tran, Q. K., Chun, B. H., Oh, C., Kim, J. and Kim, S. S., "Bio-oil Production from Fast Pyrolysis of Furniture Processing Residue," Korean J. Chem. Eng., 38(2), 306-315(2021). https://doi.org/10.1007/s11814-020-0688-x
- Qureshi, K. M., Lup, A. N. K., Khan, S., Abnisa, F. and Daud, W. M. A. W., "Effect of Temperature and Feed Rate on Pyrolysis oil Produced via Helical Screw Fluidized Bed Reactor," Korean J. Chem. Eng., 38(9), 1797-1809(2021). https://doi.org/10.1007/s11814-021-0842-0
- Lee, J. R., Kim, Y. H. and Won, Y. S., "Solid-state Reaction Between MoS2 and MoO3 in a Fluidized Bed Reactor," Korean J. Chem. Eng., 38(9), 1791-1796(2021). https://doi.org/10.1007/s11814-021-0797-1
- Tan, W., Du, S., He, Y., Lv, G., Ma, W., Xing, A. and Huang, J., "Effects of Opening Design of Gas Distribution Plate on Fluidization of the Synthesis Process of Organosilicon Monomer," Korean J. Chem. Eng., 39(8), 2034-2043(2022). https://doi.org/10.1007/s11814-022-1162-8
- Sahu, A. K., Raghavan, V. and Prasad, B., "Influence of Frictional Packing Limit on Hydrodynamics and Performance of Gas-solid Fluidized Beds," Korean J. Chem. Eng., 37(12), 2368-2383(2020). https://doi.org/10.1007/s11814-020-0660-9
- Jeong, S. W., Lee, J. H., Kim, J. and Lee, D. H., "Fluidization Behaviors of Different Types of Multi-walled Carbon Nanotubes in Gas-solid Fluidized Beds," J. Ind. Eng. Chem., 35, 217-223(2016). https://doi.org/10.1016/j.jiec.2015.12.035
- Kim, S. W., "Effect of Particle Size on Carbon Nanotube Aggregates Behavior in Dilute Phase of a Fluidized Bed," Processes, 6(8), 121(2018).
- Chu, D., Dong, Q., Bai, W. and He, Y., "Hydrodynamics Characteristics of Agglomerated Carbon Nanotube in a Tapered Fluidized Bed," Part. Sci. Technol., 1-11(2022).
- Bai, W., Chu, D. and He, Y., "Bubble Characteristic of Carbon Nanotubes Growth Process in a Tapered Fluidized Bed Reactor Without a Distributor," Chem. Eng. J., 407, 126792(2021).
- Kim, S. W., "Measurement of Carbon Nanotube Agglomerates Size and Shape in Dilute Phase of a Fluidized Bed," Korean Chem. Eng. Res., 55(5), 646-651(2017).
- Geldart, D., "Types of Gas Fluidization," Powder Technol., 7(5), 285-292(1973). https://doi.org/10.1016/0032-5910(73)80037-3
- Peng, J., Sun, W., Han, H., Xie, L. and Xiao, Y., "Experimental and Numerical Simulation Study on the Hydrodynamic Characteristics of Spherical and Irregular-shaped Particles in a 3D Liquid-fluidized Bed," Korean J. Chem. Eng., 39(11), 3165-3176(2022). https://doi.org/10.1007/s11814-022-1234-9
- An, Z., Wang, H. and Zhang, Y., "Prediction of Defluidization Behavior Using Particle Apparent Viscosity," Korean J. Chem. Eng., 39(10), 2875-2882(2022). https://doi.org/10.1007/s11814-022-1183-3
- Lee, G. H., Follett, W., Park, K., Kim, D., Lee, J. and Halloran, S., "Biot Number Calibration of an Oxy-PFBC Combustor Through Computational Particle Fluid Dynamic Analysis," Korean J. Chem. Eng., 39(4), 1086-1095(2022). https://doi.org/10.1007/s11814-021-0955-5
- Wang, X. S., Rahman, F. and Rhodes, M. J., "Nanoparticle Fluidization and Geldart's Classification," Chem. Eng. Sci., 62(13), 3455-3461(2007). https://doi.org/10.1016/j.ces.2007.02.051
- Morooka, S., Kusakabe, K., Kobata, A. and Kato, Y., "Fluidization State of Ultrafine Powders," J. Chem. Eng. Japan, 21(1), 41-46(1988). https://doi.org/10.1252/jcej.21.41
- Valverde, J. M. and Castellanos, A., "Types of Gas Fluidization of Cohesive Granular Materials," Phys. Rev. E, 75(3), 031306(2007).
- Van Ommen, J. R., Valverde, J. M. and Pfeffer, R., "Fluidization of Nanopowders: a Review," J. Nanopart Res., 14(3), 1-29(2012).
- Yu, H., Zhang, Q., Gu, G., Wang, Y., Luo, G. and Wei, F., "Hydrodynamics and Gas Mixing in a Carbon Nanotube Agglomerate Fluidized Bed," AIChE J., 52(12), 4110-4123(2006). https://doi.org/10.1002/aic.11031
- Jeong, S. W. and Lee, D. H., "Estimation of Agglomerate Size of Multi-walled Carbon Nanotubes in Fluidized Beds," Adv. Powder Technol., 28(10), 2706-2712(2017). https://doi.org/10.1016/j.apt.2017.07.023
- Parmar, K. R., Pant, K. K. and Roy, S., "Blue Hydrogen and Carbon Nanotube Production via Direct Catalytic Decomposition of Methane in Fluidized Bed Reactor: Capture and Extraction of Carbon in the form of CNTs," Energy Convers. Manag., 232, 113893(2021).
- Geng, S., Han, Z., Hu, Y., Cui, Y., Yue, J., Yu, J. and Xu, G., "Methane Decomposition Kinetics over Fe2O3 Catalyst in Micro Fluidized Bed Reaction Analyzer," Ind. Eng. Chem. Res., 57(25), 8413-8423(2018). https://doi.org/10.1021/acs.iecr.8b00662
- Lamacz, A. and Labojko, G., "CNT and H2 Production During CH4 Decomposition over Ni/CeZrO2. II. Catalyst Performance and Its Regeneration in a Fluidized Bed," ChemEngineering, 3(1), 25(2019).
- Bai, W., Yao, C., Chu, D., Geng, L. and He, Y., "Research on MWCNT Growth Process Through on-line Intermittent Monitoring in a Fluidized Bed Reactor," Results Mater., 6, 100055(2020).
- Qian, J. X., Enakonda, L. R., Wang, W. J., Gary, D., Del-Gallo, P., Basset, J. M., Liu, D. B. and Zhou, L., "Optimization of a Fluidized Bed Reactor for Methane Decomposition over Fe/Al2O3 Catalysts: Activity and Regeneration Studies," Int. J. Hydrog. Energy, 44(60), 31700-31711(2019). https://doi.org/10.1016/j.ijhydene.2019.10.058
- Keller, M., Matsumura, A. and Sharma, A., "Spray-dried Fe/Al2O3 as a Carbon Carrier for COx-free Hydrogen Production via Methane Cracking in a Fluidized Bed Process," Chem. Eng. J., 398, 125612(2020).
- Zhou, L., Enakonda, L. R., Li, S., Gary, D., Del-Gallo, P., Mennemann, C. and Basset, J. M., "Iron Ore Catalysts for Methane Decomposition to Make COx Free Hydrogen and Carbon Nano Material," J. Taiwan Inst. Chem. Eng., 87, 54-63(2018). https://doi.org/10.1016/j.jtice.2018.03.008
- Abanades, A., Rubbia, C. and Salmieri, D., "Thermal Cracking of Methane into Hydrogen for a CO2-free Utilization of Natural Gas," Int. J. Hydrog. Energy, 38(20), 8491-8496(2013). https://doi.org/10.1016/j.ijhydene.2012.08.138
- Wei, F., Wang, Y., Luo, G., Yu, H., Li, Z., Qian, W., Wang, Z. and Jin, Y., "Continuous Mass Production of Carbon Nanotubes in a Nano-agglomerate Fluidized-bed and the Reactor," U.S. Patent No. 7,563,427(2009).
- Denton, R. D., Noyes, D. B., Koveal Jr, R. J. and Ring, T. A., "Removing Carbon Nanotubes from a Continuous Reactor Effluent," U.S. Patent No. 10,343,104(2019).