DOI QR코드

DOI QR Code

Enhanced Electric Conductivity of Cement Composites by Functionalizing Graphene Oxide

산화그래핀 기능화에 의한 시멘트 복합체의 전기전도 특성 개선

  • Jung-Geun Han (Department of Civil&Environmental Engineering and Intelligent Energy&Industry, Chung-Ang Univ.) ;
  • Jae-Hyeon Jeon (Department of Civil Engineering, Chung-Ang Univ.) ;
  • Young-Ho Kim (Korea Expressway Corporation) ;
  • Jin Kim (Department of Intelligent Energy&Industry, Chung-Ang Univ.) ;
  • Jong-Young Lee (Office of Research Affairs, Chung-Ang Univ.)
  • Received : 2022.12.29
  • Accepted : 2023.01.30
  • Published : 2023.03.30

Abstract

This study has utilized self-assembled monolayers technology to improve electrical property of graphene-oxide, which has been seperated graphine powder through a chemical exfoliation. Aluminum sulfate (Al2(SO4)3) was applied on graphene-oxide as a reactant, and the fundamental research was carried out to apply on the self-sensing of cement-based construction structures. Electric resistance measurement result has shown that cement-composites with GO and Al-GO can be used as a conductor, electric resistance of GO and Al-GO contained composites improved by 10.2% and 15.9% respectively when compared to the standard cement-composite. Microstructure analyzation shown the formation of Al(OH)3 gel when Al-GO was added, which is speculated to result the smooth flow of current by improving the density of cement-composite. This implies that graphene-oxide has a possibility to be utilized as smart building materials and construction structure itself rather than just a structure.

본 연구에서는 화학적 박리를 통해 흑연분말로부터 분리한 산화그래핀의 전기적특성을 개선시키기 위해 자가조립단층막 기술을 활용하였다. 반응물질로는 황산알루미늄(Al2(SO4)3)을 적용하였으며, 시멘트를 기반으로 한 건설구조물의 자가센싱에 적용하기 위한 기초연구를 수행하였다. 전기저항 측정결과 대조군인 표준공시체와 대비할 때 GO 및 Al-GO가 함유된 공시체에서 각각 10.2%, 15.9% 개선되어 도체로서의 활용 가능성을 확인하였다. 미세구조분석 결과 Al-GO의 첨가에 따라 Al(OH)3 gel형성을 확인하였으며, 이로 인해 공시체의 밀도를 향상시켜 전류의 흐름을 원활하게 개선시킨 것으로 판단된다. 이는, 단순 구조물이 아닌 구조물 자체로서 활용성을 지닐 수 있음을 시사하며, 스마트 건설자재로서의 가능성을 확인하였다.

Keywords

Acknowledgement

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2020-2020-0-01655) supervised by the IITP(Institute of Information & Communications Technology Planning & Evaluation) and Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government.(Project Number: 22CTAP-C164339-02)

References

  1. Al-Dahawi, A., Harron, M., Sarwary, Ozturk, O., Yildirim, G., Akin, A., Sahmaran, M. and Lachemi, M. (2016), "Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials," Smart Materials and Structures, Vol.25, No.10, 105005.
  2. Barathi, M., Kumar, A. S. K., Kumar, C. U. and Rajesh, N. (2014), "Graphene oxide-aluminum oxyhydroxide interaction and its application for the effective adsorption of fluoride", RSC Advances, Vol.4, pp.53711-53721. https://doi.org/10.1039/C4RA10006A
  3. Chang, R., Asatyas, S., Lkhamsuren, G., Hirohara, M., Mondarte, E. A. Q., Suthiwanich, K., Sekine, T. and Hayashi, T. (2018), "Water near bioinert self-assembled monolayers", Polymer Jornal., Vol.50, pp.563-571.
  4. Dimov, D., Amit, I., Gorrie, O., Barnes, M. D., Neves, N. J. T. A. I., Withers, F., Russo, S. and FeliciaCraciun, M. (2018), "Ultrahigh performance nanoengineered graphene-concrete composites for multifunctional applications", Adv. Funct. Mater., Vol.28, 1705183
  5. Du, H. and Pang, S. D. (2019), "High performance cement composites with colloidal nanosilica", Construction and Building Materials, Vol.24, No.10, pp.317-325.
  6. Frac, M. and Pichor, W., (2020), "Piezoresistive properties of cement composites with expanded graphite", Composites Communications, Vol.19, pp.99-102. https://doi.org/10.1016/j.coco.2020.03.005
  7. Guo, L., Wu, J. and Wang, H. (2020), "Mechanical and perceptual characterization of ultrahigh-performance cement-based composites with silane-treated graphene nano-platelets", Construction and Building Materals, Vol.240, 117926.
  8. Han, B., Sun, S., Ding, S., Zhang, L., Yu, X. and Ou, J. (2015), "Review of nanocarbon-engineered multifunctional cementitious composites", Composites Part A : Applied Science and Manufacturing, Vol.70, pp.69-81. https://doi.org/10.1016/j.compositesa.2014.12.002
  9. Han, B., Zhang, L. and Ou, J. (2017), Smart and Multifuntional Concrete Toward Sustainable Infrastructures, Springer, Singapore.
  10. Lee, C. Y., Bae, J.-H., Kim, T.-Y., Chang, S.-H. and Kim, S. Y. (2015), "Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites", Composites Part A : Applied Science and Manufacturing, Vol.75, pp.11-17. https://doi.org/10.1016/j.compositesa.2015.04.013
  11. Mindess, S., Young, F. and Darwin, D. (2003), Concrete 2nd Edition, Technical Documents, Prentice Hall, Pearson Education, New Jersey.
  12. Qureshi, T. and Panesar, D. K. (2019), "A comparison of graphene oxide, reduced graphene oxide and pure graphene: early age properties of cement composites", 2nd RILEM Spring Convention & International Conference on Sustainable Materials(SMSS 2019) New Generation of Construction Materials, Rovinj, Croatia.
  13. Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M. and Leonhardt, A. (2012), "Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix", Cement and Concrete Composites, Vol.34, No.10, pp.1104-1113. https://doi.org/10.1016/j.cemconcomp.2012.07.008
  14. Talga (2018), Global breakthrough as Talga's graphene-infused concrete conducts electricity.
  15. Tao, J., Wang, J. and Zeng, Q. (2019), "A comparative study on the influences of CNT and GNP on the piezoresistivity of cement composites", Materials Letters, Vol.259, No.15, 126858.
  16. Xu, J., and Zhang, D. (2017), "Pressure-sensitive properties of emulsion modified graphene nanoplatelets/cement composites", Cement and Concrete Composites, Vol.84, pp.74-82. https://doi.org/10.1016/j.cemconcomp.2017.07.025