DOI QR코드

DOI QR Code

UNIQUENESS RESULTS ON MEROMORPHIC FUNCTIONS AND THEIR DIFFERENCE OPERATORS SHARING TARGETS WITH WEIGHT

  • Thu Thuy Hoang (Department of Mathematics Hanoi University of Civil Engineering) ;
  • Hong Nhat Nguyen (Faculty of Mathematical economics National Economics University) ;
  • Duc Thoan Pham (Department of Mathematics Hanoi University of Civil Engineering)
  • Received : 2022.03.15
  • Accepted : 2022.11.18
  • Published : 2023.03.31

Abstract

Let f be a nonconstant meromorphic function of hyper-order strictly less than 1, and let c ∈ ℂ \ {0} such that f(z + c) ≢ f(z). We prove that if f and its exact difference ∆cf(z) = f(z + c) - f(z) share partially 0, ∞ CM and share 1 IM, then ∆cf = f, where all 1-points with multiplicities more than 2 do not need to be counted. Some similar uniqueness results for such meromorphic functions partially sharing targets with weight and their shifts are also given. Our results generalize and improve the recent important results.

Keywords

Acknowledgement

The authors wish to express their thanks to the reviewer for his/her valuable suggestions and comments which help us improve the paper. This research is funded by Hanoi University of Civil Engineering (HUCE) under grant number 16-2022/KHXD-TD.

References

  1. K. S. Charak, R. J. Korhonen, and G. Kumar, A note on partial sharing of values of meromorphic functions with their shifts, J. Math. Anal. Appl. 435 (2016), no. 2, 1241-1248. https://doi.org/10.1016/j.jmaa.2015.10.069
  2. S. Chen, On uniqueness of meromorphic functions and their difference operators with partially shared values, Comput. Methods Funct. Theory 18 (2018), no. 3, 529-536. https://doi.org/10.1007/s40315-018-0238-2
  3. S. Chen and W. Lin, Periodicity and uniqueness of meromorphic functions concerning sharing values, Houston J. Math. 43 (2017), no. 3, 763-781.
  4. S. Chen and A. Xu, Uniqueness theorem for a meromorphic function and its exact difference, Bull. Korean Math. Soc. 57 (2020), no. 5, 1307-1317. https://doi.org/10.4134/BKMS.b190998
  5. Z.-X. Chen and H.-X. Yi, On sharing values of meromorphic functions and their differences, Results Math. 63 (2013), no. 1-2, 557-565. https://doi.org/10.1007/s00025-011-0217-7
  6. G. G. Gundersen, Meromorphic functions that share three values IM and a fourth value CM, Complex Variables Theory Appl. 20 (1992), no. 1-4, 99-106. https://doi.org/10.1080/174769
  7. R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https://doi.org/10.1090/S0002-9947-2014-05949-7
  8. W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
  9. J. Heittokangas, R. Korhonen, I. Laine, and J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 81-92. https://doi.org/10.1080/17476930903394770
  10. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. https://doi.org/10.1016/j.jmaa.2009.01.053
  11. I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993. https://doi.org/10.1515/9783110863147
  12. W. Lin, X. Lin, and A. Wu, Meromorphic functions partially shared values with their shifts, Bull. Korean Math. Soc. 55 (2018), no. 2, 469-478. https://doi.org/10.4134/BKMS.b170072
  13. F. Lu and W. Lu, Meromorphic functions sharing three values with their difference operators, Comput. Methods Funct. Theory 17 (2017), no. 3, 395-403. https://doi.org/10.1007/s40315-016-0188-5
  14. V. Noulorvang and D. T. Pham, On partial value sharing results of meromorphic functions with their shifts and its applications, Bull. Korean Math. Soc. 57 (2020), no. 5, 1083-1094. https://doi.org/10.4134/BKMS.b190483
  15. P. D. Thoan, L. T. Tuyet, and N. Vangty, On uniqueness of meromorphic functions partially sharing values with their q-shifts, Comput. Methods Funct. Theory 21 (2021), no. 2, 361-378. https://doi.org/10.1007/s40315-020-00354-5
  16. K. Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), no. 2, 225-294. https://doi.org/10.1007/BF02392741
  17. C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
  18. J. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), no. 2, 401-408. https://doi.org/10.1016/j.jmaa.2010.01.038
  19. J. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. https://doi.org/10.1016/j.jmaa.2010.03.038
  20. J. Zhang and L. Liao, Entire functions sharing some values with their difference operators, Sci. China Math. 57 (2014), no. 10, 2143-2152. https://doi.org/10.1007/s11425-014-4848-5