Acknowledgement
This work was supported by NSFC (No.11971415), Natural Science Foundation of Henan (No.212300410235), and the Key Scientific Research Program in Universities of Henan Province (Nos.21A110021, 22A110021) and Nanhu Scholars Program for Young Scholars of XYNU (No.2019).
References
- D. Bakry and M. Emery, Diffusions hypercontractives, in Seminaire de probabilites, XIX, 1983/84, 177-206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. https: //doi.org/10.1007/BFb0075847
- F. Du, J. Mao, Q. Wang, and C. Xia, Estimates for eigenvalues of weighted Laplacian and weighted p-Laplacian, Hiroshima Math. J. 51 (2021), no. 3, 335-353. https://doi. org/10.32917/h2020086
- A. G. C. Freitas and M. S. Santos, Some almost-Schur type inequalities for k-Bakry-Emery Ricci tensor, Differential Geom. Appl. 66 (2019), 82-92. https://doi.org/10.1016/j.difgeo.2019.05.009
- G. Huang and Z. Li, Liouville type theorems of a nonlinear elliptic equation for the V -Laplacian, Anal. Math. Phys. 8 (2018), no. 1, 123-134. https://doi.org/10.1007/s13324-017-0168-6
- G. Huang and B. Ma, Sharp bounds for the first nonzero Steklov eigenvalues for f-Laplacians, Turkish J. Math. 40 (2016), no. 4, 770-783. https://doi.org/10.3906/mat-1507-96
- G. Huang and B. Ma, Eigenvalue estimates for submanifolds with bounded f-mean curvature, Proc. Indian Acad. Sci. Math. Sci. 127 (2017), no. 2, 375-381. https://doi. org/10.1007/s12044-016-0308-1
- Q. Huang and Q. Ruan, Applications of some elliptic equations in Riemannian manifolds, J. Math. Anal. Appl. 409 (2014), no. 1, 189-196. https://doi.org/10.1016/j. jmaa.2013.07.004
- A. V. Kolesnikov and E. Milman, Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal. 27 (2017), no. 2, 1680-1702. https://doi.org/10.1007/s12220-016-9736-5
- A. V. Kolesnikov and E. Milman, Poincar'e and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds, Amer. J. Math. 140 (2018), no. 5, 1147-1185. https://doi.org/10.1353/ajm.2018.0027
- X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9) 84 (2005), no. 10, 1295-1361. https://doi.org/10.1016/j.matpur.2005.04.002
- H. Li and Y. Wei, f-minimal surface and manifold with positive m-Bakry-Emery Ricci curvature, J. Geom. Anal. 25 (2015), no. 1, 421-435. https://doi.org/10.1007/s12220-013-9434-5
- L. Ma and S.-H. Du, Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1203-1206. https://doi.org/10.1016/j.crma.2010.10.003
- A. M. Ndiaye, About bounds for eigenvalues of the Laplacian with density, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper No. 090, 8 pp. https://doi.org/10.3842/SIGMA.2020.090
- R. C. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), no. 3, 459-472. https://doi.org/10.1512/iumj.1977.26.26036
- Q. Tu and G. Huang, Boundary effect of m-dimensional Bakry-Emery Ricci curvature, Anal. Math. Phys. 9 (2019), no. 3, 1319-1331. https://doi.org/10.1007/s13324-018-0237-5
- G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405. https://doi.org/10.4310/jdg/1261495336
- F. Zeng, Gradient estimates of a nonlinear elliptic equation for the V -Laplacian, Bull. Korean Math. Soc. 56 (2019), no. 4, 853-865. https://doi.org/10.4134/BKMS.b180639
- F. Zeng, Gradient estimates for a nonlinear parabolic equation on complete smooth metric measure spaces, Mediterr. J. Math. 18 (2021), no. 4, Paper No. 161, 21 pp. https://doi.org/10.1007/s00009-021-01796-4
- Y. Zhu and Q. Chen, Some integral inequalities for ????? operator and their applications on self-shrinkers, J. Math. Anal. Appl. 463 (2018), no. 2, 645-658. https://doi.org/10.1016/j.jmaa.2018.03.038