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SOME INTEGRAL INEQUALITIES FOR

THE LAPLACIAN WITH DENSITY ON WEIGHTED

MANIFOLDS WITH BOUNDARY

Fanqi Zeng

Abstract. In this paper, we derive a Reilly-type inequality for the Lapla-
cian with density on weighted manifolds with boundary. As its applica-

tions, we obtain some new Poincaré-type inequalities not only on weighted

manifolds, but more interestingly, also on their boundary. Furthermore,
some mean-curvature type inequalities on the boundary are also given.

1. Introduction

Let (Mn, g, dµ) be an n-dimensional compact weighted manifold with bound-
ary ∂M . A weighted Riemannian manifold is actually a Riemannian manifold
equipped with some measure which is conformal to the usual Riemannian mea-
sure. More precisely, for a given compact n-dimensional Riemannian manifold
(Mn, g) with the metric g, the triple (Mn, g, dµ) is called a compact weighted
Riemannian manifold, where dµ = e−fdv is a weighted volume form, and f is a
smooth real-valued function on M , and dv is the Riemannian volume element
related to g.

Let n be the unit outward normal of ∂M . Define the second fundamental
form of ∂M by Π(X,Y ) = ⟨∇Xn, Y ⟩ for any two tangent vector fields X and
Y on M , and the mean curvature by H = tr(Π). The f -mean curvature
(see [16, p. 398]) at a point x ∈ M with respect to n is given by Hf (x) =
H(x)− ⟨∇f(x),n(x)⟩, where ⟨·, ·⟩ denotes the Riemannian metric g.

Following [13], on (Mn, g, dµ), we consider the Laplacian with density as
follows:

(1.1) L· := σ−1div(σα∇·) = e−f(α−1)(∆ · −α⟨∇f,∇·⟩),
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where α > 0 is a given real constant, σ is the positive function defined by
σ := e−f , ∇ denotes the Levi-Civita connection, div = tr(∇·) denotes the Rie-
mannian divergence operator, and ∆ = div∇ is the Laplace-Beltrami operator.

Notice that the Green formula (the integration by parts formula)∫
M

hLu dµ =

∫
∂M

e−f(α−1)h∂nu dµ∂ −
∫
M

e−f(α−1)⟨∇u,∇h⟩ dµ

=

∫
∂M

e−f(α−1)(h∂nu− u∂nh) dµ∂ +

∫
M

uLh dµ

holds provided u or h belongs to C2(M), where ∂nu = ⟨n,∇u⟩, and dµ∂ =
e−fdv∂ and dv∂ is the volume form on ∂M .

Following [1], to relate L with geometry we consider the (α,N)-Bakry-Émery

curvature Ricα,Nf given by

(1.2) Ricα,Nf = Ric + α∇2f − α2

N − n
∇f ⊗∇f,

where α > 0 is a given real constant and N is a constant. We note that the only
case in which N = n is permitted is when f is a constant. Here ∇2 and Ric
denote the Hessian operator and Ricci curvature, respectively. When N = ∞,
(1.2) gives the tensor

(1.3) Ricα,∞f = Ric + α∇2f,

which is called (α,∞)-Bakry-Émery curvature. The (α, f)-mean curvature of
∂M is defined by

(1.4) Hα
f (x) = H(x)− α⟨∇f(x),n(x)⟩.

In the case where α = 1, the operator L becomes the Witten Laplacian

∆f · = ∆ · −⟨∇f,∇·⟩.

Meanwhile, the (α,N)-Bakry-Émery curvature Ricα,Nf , (α,∞)-Bakry-Émery

curvature Ricα,∞f and (α, f)-mean curvature Hα
f become the N -Bakry-Émery

Ricci curvature

RicNf = Ricf −
1

N − n
∇f ⊗∇f,

∞-Bakry-Émery Ricci curvature

Ricf = Ric+∇2f

and f -mean curvature, respectively. In recent years, the Witten Laplacian
received much attention from many mathematicians (see [2, 4–7, 10–12, 17, 18]
and the references therein).

Among the important formulae in differential geometry, the Reilly formula
[14] is an important tool in the study of various geometric and analytical prob-
lems on a Riemannian manifold with smooth boundary. Ma and Du [12] ex-
tended the Reilly formula for the Witten Laplacian and applied it to study



SOME INTEGRAL INEQUALITIES FOR THE LAPLACIAN WITH DENSITY 327

eigenvalue estimates for the Witten Laplacian on compact Riemannian mani-
folds with boundary. Kolesnikov and Milman [8,9] obtained new Poincaré-type
inequalities for weighted manifolds by systematically using Ma-Du’s Reilly-type
formula combined with various conditions on the boundary of the manifold and
boundary conditions for elliptic equations. Further more recent applications
may be found in [3, 19].

The purpose of this paper is to study some integral inequalities for the op-
erator L and their applications on weighted manifolds with boundary. Firstly,
we derive a Reilly-type inequality for the operator L on weighted manifolds
with boundary, which is an important tool to prove our main theorems.

Theorem 1.1. Let (Mn, g, dµ) be a smooth compact weighted Riemannian
manifold of dimension n ≥ 2 with boundary and N ∈ (−∞, 0)∪ [n,+∞). Then
for any u ∈ C2(M):

0 ≥
∫
M

e−f(α−1)Ricα,Nf (∇u,∇u)− N − 1

N
ef(α−1)|Lu|2 dµ(1.5)

+

∫
∂M

e−f(α−1)(ef(α−1)L∂u+Hα
f ∂nu)∂nu dµ∂

+

∫
∂M

e−f(α−1)[Π(∇∂u,∇∂u)− g(∇∂u,∇∂∂nu)] dµ∂ ,

where L∂ denotes the operator L∂ · = e−f(α−1)(∆∂ · −α⟨∇∂f,∇∂ ·⟩) on the
boundary. Here, ∆∂ , ∇∂ and dµ∂ , respectively, denote the Laplacian, gradient
operators and weighted volume measure on ∂M .

Remark 1.2. In [11] (or see [8,9]), Li and Wei provide a Reilly-type inequality
for the Witten Laplacian and give some applications. In particular, if α = 1,
then our (1.5) becomes the formula (9) of Li and Wei in [11].

Throughout this work we employ Einstein summation convention. By abuse

of notation, Ricα,Nf may denote the 2-covariant tensor (Ricα,Nf )pq, but also

may denote its 1-contravariant version (Ricα,Nf )qp, as in:

⟨Ricα,Nf ∇u,∇u⟩ = gij(Ric
α,N
f )ik∇ku∇ju

= (Ricα,Nf )ij∇iu∇ju

= Ricα,Nf (∇u,∇u).

Similarly, the 2-contravariant tensor (Π−1)αβ and ((Ricα,Nf )−1)pq are defined
by:

(Π−1)ijΠjk = δik, ((Ricα,Nf )−1)ij(Ricα,Nf )jk = δik.

Given an integrable function φ on (Mn, g, dµ), the dimensional mean-value and
dimensional variance of φ on (Mn, g, dµ) are defined by

φ =

∫
M
e−f(α−1)φdµ∫

M
e−f(α−1) dµ

, V arf (φ) =

∫
M

e−f(α−1)(φ− φ)2 dµ.



328 F. ZENG

Next, by applying the above Reilly-type inequality (1.5), we obtain some
new Poincaré-type inequalities for the operator L on weighted Riemannian
manifolds with boundary.

Theorem 1.3. Let (Mn, g, dµ) be a smooth compact weighted Riemannian

manifold of dimension n ≥ 2 with boundary and Ricα,Nf > 0, where N ∈
(−∞, 0) ∪ [n,+∞). Then for any φ ∈ C1(M):

(1) Assume that Π ≥ 0 (M is locally convex). Then

N

N − 1
V arf (φ) ≤

∫
M

e−f(α−1)(Ricα,Nf )−1(∇φ,∇φ) dµ.

(2) Assume that Hα
f ≥ 0 (M is generalized mean-convex), φ ≡ 0 on ∂M .

Then

N

N − 1

∫
M

e−f(α−1)φ2 dµ ≤
∫
M

e−f(α−1)(Ricα,Nf )−1(∇φ,∇φ) dµ.

(3) Assume that Hα
f > 0 (M is strictly generalized mean-convex). Then

N

N − 1

∫
M

e−f(α−1)φ2 dµ ≤
∫
M

e−f(α−1)(Ricα,Nf )−1(∇φ,∇φ) dµ

+

∫
∂M

e−f(α−1) φ
2

Hα
f

dµ∂ .

Remark 1.4. Particularly, when α = 1, then Theorem 1.3 reduces to Theorem
1.2 of Kolesnikov and Milman in [8].

By using the above Reilly-type inequality (1.5), we can obtain some Poincaré-
type inequalities on the boundary of weighted Riemannian manifolds
(Mn, g, dµ).

Theorem 1.5. Let (Mn, g, dµ) be a smooth compact weighted Riemannian

manifold of dimension n ≥ 2 with boundary and Ricα,Nf ≥ ρg, where ρ ∈ R
and N ∈ (−∞, 0) ∪ [n,+∞). Assume that Hα

f > 0 on ∂M . Then for any

ψ ∈ C2(∂M) ∫
∂M

e−f(α−1)Π(∇∂ψ,∇∂ψ) dµ∂(1.6)

≤
∫
∂M

e−f(α−1)

Hα
f

(ρ
2
ψ + ef(α−1)L∂ψ

)2
dµ∂ .

We also obtain a dual-version of Theorem 1.5:

Theorem 1.6. Let (Mn, g, dµ) be a smooth compact weighted Riemannian

manifold of dimension n ≥ 2 with boundary and Ricα,Nf ≥ 0, where N ∈
(−∞, 0) ∪ [n,+∞). Assume that Π > 0 on ∂M . Then for any ψ ∈ C1(∂M)∫

∂M

e−f(α−1)Π−1(∇∂ψ,∇∂ψ) dµ∂ ≥
∫
∂M

e−f(α−1)Hα
f ψ

2 dµ∂
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− N − 1

N

(
∫
∂M

e−f(α−1)ψ dµ∂)
2

V (M)
,

where V (M) =
∫
M
e−f(α−1) dµ.

Remark 1.7. Particularly, when α = 1, then Theorem 1.5 and Theorem 1.6
reduce to Theorem 1.1 and Theorem 1.2 of Kolesnikov and Milman in [9],
respectively.

On the other hand, by applying Theorem 1.5, we also achieve the following
geometric inequalities involving (α, f)-mean curvature.

Theorem 1.8. Let (Mn, g, dµ) be a smooth compact weighted Riemannian

manifold of dimension n ≥ 2 with boundary and Ricα,Nf ≥ ρg, where ρ ∈ R
and N ∈ (−∞, 0) ∪ [n,+∞). Assume that Hα

f > 0 on ∂M . Then for any
nontrivial ψ, one of the following conclusions holds:

(1.7) B2(ψ) ≤ A(ψ)C(ψ),

(1.8)
ρ

2
≤ −B(ψ)

A(ψ)
−

√(
B(ψ)

A(ψ)

)2

− C(ψ)

A(ψ)
,

ρ

2
≥ −B(ψ)

A(ψ)
+

√(
B(ψ)

A(ψ)

)2

− C(ψ)

A(ψ)
,

where

A(ψ) =

∫
∂M

ψ2

Hα
f

e−f(α−1) dµ∂ , B(ψ) =

∫
∂M

ψL∂ψ
Hα
f

dµ∂ ,

C(ψ) =

∫
∂M

[
(ef(α−1)L∂ψ)2

Hα
f

−Π(∇∂u,∇∂u)

]
e−f(α−1) dµ∂ .

Remark 1.9. From Theorem 1.8, we can deduce Theorem 1.1 of Tu and Huang
in [15].

In the end, by applying Theorem 1.6, the following mean-curvature type
inequalities can be proven.

Theorem 1.10. Let (Mn, g, dµ) be a smooth compact weighted Riemannian

manifold of dimension n ≥ 2 with boundary and Ricα,Nf ≥ 0, where N ∈
(−∞, 0) ∪ [n,+∞). Assume that Hα

f > 0 on ∂M . Then

(1.9)

∫
∂M

e−f(α−1) 1

Hα
f

dµ∂ ≥ N

N − 1
V (M).

Remark 1.11. Particularly, when α = 1, then Theorem 1.10 reduces to some
previous results in [9, Theorem 4.4] and [7, Theorem 1.1].
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This paper is organized as follows. In Section 2 we prove Theorem 1.1, and
Theorem 1.3 is proved in Section 3. Theorem 1.5 and Theorem 1.6 are proved
in Section 4. In Section 5 we make some global estimates on the generalized
mean curvature Hα

f on the boundary of weighted Riemannian manifolds.

2. Proof of Theorem 1.1

In this section, we give the proof of our main tool, Theorem 1.1 from the
Introduction.

Proof of Theorem 1.1. A simple calculation gives the following Bochner-type
formula (see [13, Lemma 1]) for any function u ∈ C3(M):

1

2
L|∇u|2 = e−f(α−1)

(
|∇2u|2 + (Ric + α∇2f)(∇u,∇u)

)
(2.1)

+ g(∇u,∇Lu) + (α− 1)g(∇u,∇f)Lu.

Using the Bochner-type formula (2.1) and integration by parts, we obtained
the following Reilly-type formula (see [13, Theorem 2]):∫

M

(
ef(α−1)|Lu|2 − e−f(α−1)|∇2u|2

)
dµ(2.2)

=

∫
M

e−f(α−1)(Ric + α∇2f)(∇u,∇u)
)
dµ

+

∫
∂M

e−f(α−1)g(∂nu,H∂nu− αg(∇u,∇f) + ∆∂u)dµ∂

+

∫
∂M

e−f(α−1)[Π(∇∂u,∇∂u)− g(∇∂u,∇∂∂nu)]dµ∂ .

Now, we can consider the Bochner-type formula (2.1) for (α,N)-Bakry-

Émery curvature. Note that

|∇2u|2 +Ricα,∞f (∇u,∇u)(2.3)

=

∣∣∣∣∇2u− ∆u

n
g

∣∣∣∣2 + 1

N
(ef(α−1)Lu)2 +Ricα,Nf (∇u,∇u)

+

(√
N − n

Nn
∆u+

√
n

N(N − n)
α(∇f · ∇u)

)2

≥ 1

N
(ef(α−1)Lu)2 +Ricα,Nf (∇u,∇u)

provided N ∈ (−∞, 0)∪ [n,+∞). Substituting this into (2.1) and (2.2), we get

1

2
L|∇u|2(2.4)

≥ e−f(α−1)
( 1
N

(ef(α−1)Lu)2 +Ricα,Nf (∇u,∇u)
)

+ g(∇u,∇Lu) + (α− 1)g(∇u,∇f)Lu
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=
1

N
ef(α−1)|Lu|2 + e−f(α−1)Ricα,Nf (∇u,∇u) + g(∇u,∇Lu)

+ (α− 1)g(∇u,∇f)Lu

and

0 ≥
∫
M

e−f(α−1)Ricα,Nf (∇u,∇u)− N − 1

N
ef(α−1)|Lu|2 dµ

+

∫
∂M

e−f(α−1)(ef(α−1)L∂u+Hα
f ∂nu)∂nu dµ∂

+

∫
∂M

e−f(α−1)[Π(∇∂u,∇∂u)− g(∇∂u,∇∂∂nu)] dµ∂ .

This completes the proof. □

Note that the Bochner-type formula (2.4) looks very similar to the Bochner
formula for the Ricci tensor of an n-dimensional manifold. This is our motiva-
tion for the definition of the (α,N)-Bakry-Émery curvature Ricα,Nf .

3. Proof of Theorem 1.3

The idea in the proof of Theorem 1.3 is similar to the one used by Kolesnikov
and Milman in [8]. We use the Reilly-type inequality to prove Theorem 1.3
below.

Proof of Theorem 1.3. (1) Since Mn is compact, by integration by parts, we
have

(3.1)

∫
∂M

∂nuL∂u dµ∂ = −
∫
∂M

e−f(α−1)g(∇∂u,∇∂∂nu) dµ∂ .

By (1.5) and (3.1), we can get

0 ≥
∫
M

(
e−f(α−1)Ricα,Nf (∇u,∇u)− N − 1

N
ef(α−1)|Lu|2

)
dµ(3.2)

+

∫
∂M

e−f(α−1)[Π(∇∂u,∇∂u)− 2g(∇∂u,∇∂∂nu)] dµ∂

+

∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂ .

Let u be a smooth solution to the Neumann problem

(3.3)

{
ef(α−1)Lu = φ on M,
∂nu ≡ 0 on ∂M.

Then ∫
M

e−f(α−1)φ2 dµ =

∫
M

ef(α−1)(Lu)2 dµ(3.4)

= −
∫
M

e−f(α−1)⟨∇φ,∇u⟩ dµ+

∫
∂M

e−f(α−1)φ∂nu dµ∂ .
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Consequently, by the Cauchy-Schwarz inequality∫
M

e−f(α−1)φ2 dµ(3.5)

≤
(∫

M

e−f(α−1)⟨Ricα,Nf ∇u,∇u⟩ dµ
) 1

2
(∫

M

e−f(α−1)⟨(Ricα,Nf )−1∇φ,∇φ⟩ dµ
) 1

2

+

∫
∂M

e−f(α−1)φ∂nu dµ∂ .

Since ∂nu
∣∣
∂M

≡ 0 and Π ≥ 0, we obtain from (3.2)

(3.6)

∫
M

ef(α−1)|Lu|2 dµ ≥ N

N − 1

∫
M

e−f(α−1)⟨Ricα,Nf ∇u,∇u⟩ dµ.

Consequently, we obtain

(3.7)
N − 1

N

∫
M

e−f(α−1)φ2 dµ ≥
∫
M

e−f(α−1)⟨Ricα,Nf ∇u,∇u⟩ dµ.

Plugging this back into (3.5) and using that ∂nu
∣∣
∂M

≡ 0 yields

N

N − 1

∫
M

e−f(α−1)φ2 dµ ≤
∫
M

e−f(α−1)⟨(Ricα,Nf )−1∇φ,∇φ⟩ dµ.

By the fact that
∫
M
e−f(α−1)φdµ =

∫
M

Lu dµ =
∫
∂M

e−f(α−1)∂nu dµ∂ , we
obtain the assertion of Case (1).

(2) Let φ be a smooth solution to the Dirichlet problem

(3.8)

{
ef(α−1)Lu = φ on M,
u ≡ 0 on ∂M.

Observe that (3.7) still holds since u ≡ 0 and Hα
f ≥ 0. Plugging (3.7) back

into (3.5) and using that φ
∣∣
∂M

≡ 0 yields the assertion of Case (2).

(3) Let φ be a smooth solution to the Dirichlet problem (3.8). If Hα
f > 0,

by (3.2), we have

N − 1

N

∫
M

e−f(α−1)φ2 dµ ≥
∫
M

e−f(α−1)Ricα,Nf (∇u,∇u) dµ(3.9)

+

∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂ .

On the other hand, we obtain for any ε > 0:∫
M

e−f(α−1)φ2 dµ(3.10)

= −
∫
M

e−f(α−1)⟨∇φ,∇u⟩ dµ+

∫
∂M

e−f(α−1)φ∂nu dµ∂

≤ ε

2

∫
M

e−f(α−1)⟨Ricα,Nf ∇u,∇u⟩ dµ

+
1

2ε

∫
M

e−f(α−1)⟨(Ricα,Nf )−1∇φ,∇φ⟩ dµ
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+

∫
∂M

e−f(α−1)φ∂nu dµ∂ .

By (3.9) and (3.10), we can get(
1− ε

2

N − 1

N

)∫
M

e−f(α−1)φ2 dµ

≤ 1

2ε

∫
M

e−f(α−1)⟨(Ricα,Nf )−1∇φ,∇φ⟩ dµ− ε

2

∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂

+

∫
∂M

e−f(α−1)φ∂nu dµ∂

≤ 1

2ε

∫
M

e−f(α−1)⟨(Ricα,Nf )−1∇φ,∇φ⟩ dµ+
1

2ε

∫
∂M

e−f(α−1) φ
2

Hα
f

dµ∂ .

Multiplying by 2ε and using the optimal ε = N
N−1 , we obtain the assertion of

Case (3). This completes the proof. □

4. Proof of Theorem 1.5 and Theorem 1.6

We use the Reilly-type inequality to prove Theorem 1.5 below.

Proof of Theorem 1.5. Let u be a smooth solution to the Dirichlet problem

(4.1)

{
Lu = 0 on M,
u ≡ ψ on ∂M.

By (1.5), we have

0 ≥ ρ

∫
M

e−f(α−1)|∇u|2 dµ+

∫
∂M

e−f(α−1)(ef(α−1)L∂ψ +Hα
f ∂nu)∂nu dµ∂

+

∫
∂M

e−f(α−1)[Π(∇∂ψ,∇∂ψ)− g(∇∂ψ,∇∂∂nu)] dµ∂ .

By (3.1), we have

0 ≥ ρ

∫
M

e−f(α−1)|∇u|2 dµ+

∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂(4.2)

+

∫
∂M

e−f(α−1)Π(∇∂ψ,∇∂ψ) dµ∂ + 2

∫
∂M

∂nuL∂ψ dµ∂ .

On the other hand, note that∫
M

e−f(α−1)|∇u|2 dµ =

∫
∂M

e−f(α−1)u∂nu dµ∂ −
∫
M

uLu dµ.

It follows by (4.1) that

(4.3)

∫
M

e−f(α−1)|∇u|2 dµ =

∫
∂M

e−f(α−1)ψ∂nu dµ∂ .
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By (4.2) and (4.3), we can get∫
∂M

e−f(α−1)Π(∇∂ψ,∇∂ψ) dµ∂

≤ − ρ

∫
∂M

e−f(α−1)ψ∂nu dµ∂ −
∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂

− 2

∫
∂M

∂nuL∂ψ dµ∂

= −
∫
∂M

(
e−f(α−1)Hα

f (∂nu)
2 + ρe−f(α−1)ψ∂nu+ 2∂nuL∂ψ

)
dµ∂

= −
∫
∂M

(
e−f(α−1)Hα

f (∂nu)
2 +

(
ρe−f(α−1)ψ + 2L∂ψ

)
∂nu

)
dµ∂

≤
∫
∂M

e−f(α−1)

Hα
f

(ρ
2
ψ + ef(α−1)L∂ψ

)2
dµ∂ .

This completes the proof. □

Next we use the Reilly-type inequality to prove Theorem 1.6 below.

Proof of Theorem 1.6. By the Cauchy-Schwarz inequality and (3.2), we have∫
M

N − 1

N
ef(α−1)|Lu|2 dµ(4.4)

≥
∫
∂M

e−f(α−1)[Π(∇∂u,∇∂u) +Hα
f (∂nu)

2] dµ∂

− 2

∫
∂M

e−f(α−1)g(∇∂u,∇∂∂nu) dµ∂

≥
∫
∂M

e−f(α−1)[Π(∇∂u,∇∂u) +Hα
f (∂nu)

2] dµ∂

−
∫
∂M

e−f(α−1)Π−1(∇∂∂nu,∇∂∂nu) dµ∂

−
∫
∂M

e−f(α−1)Π(∇∂u,∇∂u) dµ∂

=

∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂ −
∫
∂M

e−f(α−1)Π−1(∇∂∂nu,∇∂∂nu) dµ∂ .

Let u be a smooth solution to the Neumann problem

(4.5)

{
ef(α−1)Lu =

∫
∂M

e−f(α−1)ψ dµ∂

V (M) on M,

∂nu ≡ ψ on ∂M.

By (4.4) and (4.5), we have∫
M

N − 1

N
e−f(α−1)

(∫
∂M

e−f(α−1)ψ dµ∂

V (∂M)

)2

dµ
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≥
∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂ −
∫
∂M

e−f(α−1)Π−1(∇∂∂nu,∇∂∂nu) dµ∂ .

This completes the proof. □

5. Proof of Theorem 1.8

In this section, we will use Theorem 1.5 to prove Theorem 1.8.

Proof of Theorem 1.8. In particular, when Hα
f > 0, then the formula (1.6) can

be written as ∫
∂M

e−f(α−1)Π(∇∂ψ,∇∂ψ) dµ∂(5.1)

≤
∫
∂M

e−f(α−1)

Hα
f

(
tψ + ef(α−1)L∂ψ

)2
dµ∂ ,

which is equivalent to(∫
∂M

ψ2

Hα
f

e−f(α−1) dµ∂

)
t2 + 2

(∫
∂M

ψL∂ψ
Hα
f

dµ∂

)
t

+

∫
∂M

[
(ef(α−1)L∂ψ)2

Hα
f

−Π(∇∂ψ,∇∂ψ)

]
e−f(α−1) dµ∂ ≥ 0

holds for any t ≤ ρ
2 . Thus, we have

B2(ψ) ≤ A(ψ)C(ψ)

or

ρ

2
≤ −B(ψ)

A(ψ)
−

√(
B(ψ)

A(ψ)

)2

− C(ψ)

A(ψ)
or

ρ

2
≥ −B(ψ)

A(ψ)
+

√(
B(ψ)

A(ψ)

)2

− C(ψ)

A(ψ)
.

This completes the proof. □

6. Mean-curvature type inequalities

In this section, we will get some global estimates for the generalized mean
curvature on ∂M . Setting ψ ≡ 1 in Theorem 1.6, we can get:

Theorem 6.1. Let (Mn, g, dµ) be a smooth compact weighted Riemannian

manifold of dimension n ≥ 2 with boundary and Ricα,Nf ≥ 0, where N ∈
(−∞, 0) ∪ [n,+∞). Assume that Π > 0 on ∂M . Then

(6.1)

∫
∂M

e−f(α−1)Hα
f dµ∂ ≤ N − 1

N

(V (∂M))2

V (M)
,

where V (∂M) =
∫
∂M

e−f(α−1) dµ∂ and V (M) =
∫
M
e−f(α−1) dµ.
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By the Cauchy-Schwarz inequality, we have

(6.2)

∫
∂M

e−f(α−1)Hα
f dµ∂

∫
∂M

e−f(α−1) 1

Hα
f

dµ∂ ≥ (V (∂M))2.

An immediate consequence of (6.1) and (6.2) is:

Theorem 6.2. Let (Mn, g, dµ) be a smooth compact weighted Riemannian

manifold of dimension n ≥ 2 with boundary and Ricα,Nf ≥ 0, where N ∈
(−∞, 0) ∪ [n,+∞). Assume that Π > 0 on ∂M . Then

(6.3)

∫
∂M

e−f(α−1) 1

Hα
f

dµ∂ ≥ N

N − 1
V (M).

In fact, we can replace the assumption Π > 0 in Theorem 6.2 by a weaker
condition Hα

f > 0, and obtain the following theorem on ∂M .

Theorem 6.3. Let (Mn, g, dµ) be a smooth compact weighted Riemannian

manifold of dimension n ≥ 2 with boundary and Ricα,Nf ≥ 0, where N ∈
(−∞, 0) ∪ [n,+∞). Assume that Hα

f > 0 on ∂M . Then

(6.4)

∫
∂M

e−f(α−1) 1

Hα
f

dµ∂ ≥ N

N − 1
V (M).

Proof. Let u be a smooth solution to the Dirichlet problem

(6.5)

{
ef(α−1)Lu = 1 on M,
u ≡ 0 on ∂M.

By (3.2), we can get

N − 1

N
V (M) =

∫
M

N − 1

N
ef(α−1)|Lu|2 dµ(6.6)

≥
∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂ .

On the other hand, note that

(V (M))2 =

(∫
M

ef(α−1)|Lu|2 dµ
)2

(6.7)

=

(∫
∂M

e−f(α−1)∂nu dµ∂

)2

≤
∫
∂M

e−f(α−1)Hα
f (∂nu)

2 dµ∂

∫
∂M

e−f(α−1) 1

Hα
f

dµ∂ .

By (6.6) and (6.7), the assertion follows. □
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