DOI QR코드

DOI QR Code

Design of Dual-band Frequency Selective Surface Applicable to Wi-Fi 6E System

Wi-Fi 6E 시스템에 적용 가능한 이중대역 주파수 선택표면 구조 설계

  • Yun-Seok Mun (Dept. of Smart Information Technology Engineering, Kongju National University) ;
  • Sung-Sil Cho (Dept. of Smart Information Technology Engineering, Kongju National University) ;
  • Ic-Pyo Hong (Dept. of Smart Information Technology Engineering, Kongju National University)
  • Received : 2023.03.09
  • Accepted : 2023.03.23
  • Published : 2023.03.31

Abstract

In this paper, a dual-band stopband frequency selective surface that can be applied to Wi-Fi 6E systems is designed to block external interfering signals with adjacent operating frequency spectrum in indoor wireless LAN environments. The proposed frequency selective surface structure has frequency blocking characteristics in the 2.4GHz and 6GHz bands, and is realized through a modified crossed dipole structure and an interlocking puzzle form between unit structures. The proposed structure is designed to have stable frequency response characteristics with respect to incident angle and polarization, and the experimental results show good agreement with the simulation results for incident waves from 0° to 45°.

본 논문에서는 실내 무선랜 환경에서 인접한 동작 주파수 스펙트럼을 가진 외부 간섭신호를 차단하기 위해 Wi-Fi 6E 시스템에 적용할 수 있는 이중대역 차단 주파수 선택표면을 설계하였다. 제안한 주파수 선택적 표면 구조는 2.4GHz 대역과 6GHz 대역에서 주파수 차단 특성을 가지며, 변형된 교차 쌍극자 구조와 단위 구조간 서로 맞물린 퍼즐 형태를 통해 구현되었다. 제안한 구조는 입사각과 편파에 대해 안정적인 주파수 응답 특성을 갖도록 설계되었으며, 제작 및 실험으로부터 0°~45°의 입사파에 대해 시뮬레이션에서 얻은 결과와 잘 일치하는 것을 확인하였다.

Keywords

Acknowledgement

This work was supported in part by the Basic Science Research Program under Grant 2020R1I1A3057142, in part by the Priority Research Center Program through the National Research Foundation under Grant 2019R1A6A1A03032988, and in part by the Underground City of the Future Program funded by the Ministry of Science and ICT.

References

  1. T. Pelkey, "FCC adopts fules for the 6 GHz band, unleashing 1,200 megahertz of spectrum for unlicensed use," https://www.fcc.gov/document/fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses
  2. S. Armour, A. Doufexi, B. S. Lee, A. Nix and D. Bull, "The impact of power limitations and adjacent residence interference on the performance of WLANs for home networking applications," IEEE Trans. Consumer Electron., vol.47, No.3, pp.502-511, 2001. DOI: 10.1109/30.964139
  3. G. H. H. Sung, K. W. Sowerby, M. J. Neve and A.G. Williamson, "A frequency-selective wall for interference reduction in wireless indoor environments," IEEE Antennas Propag. Mag., vol.48, No.5, pp. 29-37, 2006. DOI: 10.1109/MAP.2006.277152
  4. B. Doken and M. Kartal, "Easily optimizable dual-band frequency-selective surface design," IEEE Antennas and Wireless Propagation Letters, vol.16, pp.2979-2982, 2017. DOI: 10.1109/LAWP.2017.2756118
  5. U. Farooq, M. F. Shafique and M. J. Mughal, "Polarization insensitive dual band frequency selective surfaces for RF shielding through glass windows," IEEE Transactions on Electromagnetic Compatibility, vol.62, No.1, pp.93-100, 2020. DOI: 10.1109/TEMC.2019.2893408
  6. A. C. K. Mak, C. R. Rowell, R. D. Murch and C. L. Mak, "Reconfigurable multiband antenna designs for wireless communication devices," IEEE Transactions on Antennas and Propagation, vol.55, no.7, pp.1919-1928, 2007. DOI: 10.1109/TAP.2007.895634
  7. P. Zhao, Z. Zong, B. Li, W. Wu and D. Fang, "Miniaturised bandstop frequency selective surface based on quasi-lumped inductor and capacitor," Electronics Letters, vol.53. no.10, pp.642-644, 2017. DOI: 10.1049/el.2017.0548
  8. A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi and D. Abbott, "Design of dual-band frequency selective surface with miniaturized elements," 2014 International Workshop on Antenna Technology: Small Antennas, Novel EM Structures and Materials, and Applications (IWAT), pp.201-204, 2014. DOI: 10.1109/IWAT.2014.6958638
  9. M. B. Yan, C. Xu, Z. Li and W. Wang, W. Wang and L. Zheng, "A dual-band frequency selective surface with close band spacing and miniaturized response," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp.1-3, 2018. DOI: 10.1109/ICMMT.2018.8563566
  10. Y. Ma, W. Wu, Y. Yuan, X. Zhang and N. Yuan, "A convoluted structure for miniaturized dual-bandstop frequency selective surface," IEEE Antennas and Wireless Propagation Letters, vol.18, no.2, pp.328-332,
  11. R. Natarajan, M. Kanagasabai, S. Baisakhiya, R. Sivasamy, S. Palaniswamy and J. K. Pakkathillam, "A compact frequency selective surface with stable response for WLAN applications," IEEE Antennas and Wireless Propagation Letters, vol.12, pp.718-720, 2013. DOI: 10.1109/LAWP.2013.2264837
  12. W. Yin, H. Zhang, T. Zhong and X. Min, "Ultra-miniaturized low-profile angularly-stable frequency selective surface design," IEEE Transactions on Electromagnetic Compatibility, vol.61, No.4, pp.1234-1238, 2019. DOI: 10.1109/TEMC.2018.2881161
  13. J. Y. Xue, S. X. Gong, P. F. Zhang, W. Wang and F. F.Zhang, "A new miniaturized fractal frequency selective surface with excellent angular stability," Progress In Electromagnetics Research Letters, vol.13, pp.131-138, 2010. DOI: 10.2528/PIERL10010804
  14. Q. Guo, H. Liu and Q. Peng, "Transparent and high angular stability frequency selective surface for dual-band RF shielding," 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility(APEMC), 2022. DOI: 10.1109/APEMC53576.2022.9888401
  15. R. Krishnan, V. Selvaraj, D. Sasirekha, K. Lalitha, K. Jayamani and R. Atla, "A compact polarization-independent Dual-Band frequency selective surface for smart phone safety application," 2020 7th International Conference on Smart Structures and Systems (ICSSS), 2020. DOI: 10.1109/ICSSS49621.2020.9202323
  16. F. Bagci, C. Mulazimoglu, S. Can, E. Karakaaya, A. E. Yilmaz and B. Akaoglu, "A glass based dual band frequency selective surface for protecting systems against WLAN signals," International Journal of Electrocns and Communications, vol.82, pp.426-434, 2017. DOI: 10.1016/j.aeue.2017.10.018
  17. N. Jawad and L. Markley, "A single-layer frequency selective surface with dual wideband band-stop response," IEEE Antnnas and wirelss propagation letters, vol.19, no.6, pp.916-920, 2020. DOI: 10.1109/LAWP.2020.2982132