Acknowledgement
This research was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2018R1A2B6009620)
References
- Tang, H., Xu, D., Sebe, N., & Wang, Y.,"A survey on multimodal deep learning for image synthesis: Applications, methods, datasets, evaluation metrics, and results comparison," IEEE Access, Vol.8, pp.919-145, 2020. DOI: 10.1145/3461353.3461388
- Shorten, C., & Khoshgoftaar, T. M.,"A survey on image data augmentation for deep learning," Journal of Big Data, Vol.6, No.1, pp.1-48, 2019. DOI: 10.1186/s40537-019-0197-0
- Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. "Focal loss for dense object detection," Proceedings of the IEEE international conference on computer vision, pp.2980-2988, 2018. DOI: 10.48550/arXiv.1708.02002
- Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. "Random erasing data augmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.43, No.2, pp.564-578. 2018. DOI: 10.48550/arXiv.1708.04896
- Gao, Y., Feng, J., & Krahenbuhl, P. "Augmenting supervised neural networks with unsupervised objectives for large-scale image classification," Proceedings of the IEEE International Conference on Computer Vision, pp.2624-2633, 2019. DOI: 10.48550/arXiv.1606.06582
- Zhao, H., Zhang, L., Liu, M. Y., Shao, J., & Kautz, J. "Differentiable augmentation for data-efficient GAN training," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.6489-6498, 2020. DOI: 10.48550/arXiv.2006.10738
- Siddiquee, M. R., et al., "AugmentGAN: Deep Learning Augmentation for Medical Image Segmentation," IEEE Access, 7, 113305-113314.
- Shorten, C., & Khoshgoftaar, T. M. "A survey on image data augmentation for deep learning," Journal of Big Data, Vol.6, No.1, pp.1-48. 2019. DOI: 10.1186/s40537-019-0197-0
- Niblack, W., & Sauvola, J. "Adaptive thresholding using the integral image," Proceedings of the workshop on Document Analysis Systems, pp.21-28, 1994.
- N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, vol.9, no.1, pp. 62-66, 1979. DOI: 10.1109/TSMC.1979.4310076
- Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. "ImageNet: A Large-Scale Hierarchical Image Database," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. DOI: 10.1109/CVPR.2009.5206848
- Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P., "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, Vol.13, No.4, pp.600-612. 2004. DOI: 10.1109/TIP.2003.819861
- Wang, Z., Simoncelli, E. P., & Bovik, A. C., "Multiscale structural similarity for image quality assessment," Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Vol.2, pp.1398-1402, 2003. DOI: 10.1109/ACSSC.2003.1292216
- Sheikh, H. R., & Bovik, A. C. "Image information and visual quality," IEEE Transactions on Image Processing, Vol.15, No.2, 2006. DOI: 10.1109/TIP.2005.859378
- Jocher, Glenn, et al. "YOLOv5: A Universal Object Detector Made for Production," arXiv preprint arXiv:2104.02123, 2021.
- He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian. "Deep Residual Learning for Image Recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2016, pp.770-778, 2016. DOI: 10.1109/CVPR.2016.90