DOI QR코드

DOI QR Code

Data augmentation technique based on image binarization for constructing large-scale datasets

대형 이미지 데이터셋 구축을 위한 이미지 이진화 기반 데이터 증강 기법

  • Lee JuHyeok (School. of Computer Engineering & Applied Mathematics, Hankyong National University) ;
  • Kim Mi Hui (School. of Computer Engineering & Applied Mathematics, Hankyong National University)
  • Received : 2023.02.27
  • Accepted : 2023.03.20
  • Published : 2023.03.31

Abstract

Deep learning can solve various computer vision problems, but it requires a large dataset. Data augmentation technique based on image binarization for constructing large-scale datasets is proposed in this paper. By extracting features using image binarization and randomly placing the remaining pixels, new images are generated. The generated images showed similar quality to the original images and demonstrated excellent performance in deep learning models.

딥러닝은 다양한 컴퓨터 비전 문제를 해결할 수 있지만, 대량의 데이터셋이 필요하다. 본 논문에서는 대형 이미지 데이터셋을 구축하기 위해 이미지 이진화 기반 데이터 증강 기법을 제안한다. 이미지 이진화를 사용하여 특성을 추출하고 추출된 나머지 픽셀을 랜덤하게 배치하여 새로운 이미지를 생성한다. 생성된 이미지는 원본 이미지와 유사한 품질을 보여주며, 딥러닝 모델에서도 뛰어난 성능을 보였다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2018R1A2B6009620)

References

  1. Tang, H., Xu, D., Sebe, N., & Wang, Y.,"A survey on multimodal deep learning for image synthesis: Applications, methods, datasets, evaluation metrics, and results comparison," IEEE Access, Vol.8, pp.919-145, 2020. DOI: 10.1145/3461353.3461388 
  2. Shorten, C., & Khoshgoftaar, T. M.,"A survey on image data augmentation for deep learning," Journal of Big Data, Vol.6, No.1, pp.1-48, 2019. DOI: 10.1186/s40537-019-0197-0 
  3. Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. "Focal loss for dense object detection," Proceedings of the IEEE international conference on computer vision, pp.2980-2988, 2018. DOI: 10.48550/arXiv.1708.02002 
  4. Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. "Random erasing data augmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.43, No.2, pp.564-578. 2018. DOI: 10.48550/arXiv.1708.04896 
  5. Gao, Y., Feng, J., & Krahenbuhl, P. "Augmenting supervised neural networks with unsupervised objectives for large-scale image classification," Proceedings of the IEEE International Conference on Computer Vision, pp.2624-2633, 2019. DOI: 10.48550/arXiv.1606.06582 
  6. Zhao, H., Zhang, L., Liu, M. Y., Shao, J., & Kautz, J. "Differentiable augmentation for data-efficient GAN training," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.6489-6498, 2020. DOI: 10.48550/arXiv.2006.10738 
  7. Siddiquee, M. R., et al., "AugmentGAN: Deep Learning Augmentation for Medical Image Segmentation," IEEE Access, 7, 113305-113314.
  8. Shorten, C., & Khoshgoftaar, T. M. "A survey on image data augmentation for deep learning," Journal of Big Data, Vol.6, No.1, pp.1-48. 2019. DOI: 10.1186/s40537-019-0197-0 
  9. Niblack, W., & Sauvola, J. "Adaptive thresholding using the integral image," Proceedings of the workshop on Document Analysis Systems, pp.21-28, 1994.
  10. N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, vol.9, no.1, pp. 62-66, 1979. DOI: 10.1109/TSMC.1979.4310076 
  11. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. "ImageNet: A Large-Scale Hierarchical Image Database," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. DOI: 10.1109/CVPR.2009.5206848 
  12. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P., "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, Vol.13, No.4, pp.600-612. 2004. DOI: 10.1109/TIP.2003.819861 
  13. Wang, Z., Simoncelli, E. P., & Bovik, A. C., "Multiscale structural similarity for image quality assessment," Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Vol.2, pp.1398-1402, 2003. DOI: 10.1109/ACSSC.2003.1292216 
  14. Sheikh, H. R., & Bovik, A. C. "Image information and visual quality," IEEE Transactions on Image Processing, Vol.15, No.2, 2006. DOI: 10.1109/TIP.2005.859378 
  15. Jocher, Glenn, et al. "YOLOv5: A Universal Object Detector Made for Production," arXiv preprint arXiv:2104.02123, 2021. 
  16. He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian. "Deep Residual Learning for Image Recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2016, pp.770-778, 2016. DOI: 10.1109/CVPR.2016.90