DOI QR코드

DOI QR Code

LTCC-based transformer design for output stage of differential RF power amplifiers

차동 전력증폭기 출력단용 LTCC 기반 RF 트랜스포머 설계

  • Jewook Woo (Department of Electronic Engineering, Gangneung-Wonju National University) ;
  • Heesu Kim (Department of Electronic Engineering, Gangneung-Wonju National University) ;
  • Jooyoung Jeon (Department of Electronic Engineering, Gangneung-Wonju National University)
  • 우제욱 ;
  • 김희수 ;
  • 전주영
  • Received : 2023.02.22
  • Accepted : 2023.03.13
  • Published : 2023.03.31

Abstract

In this paper, a Radio Frequency (RF) transformer (TF) based on LTCC (Low Temperature Co-fired Ceramic) for the output stage of differential power amplifiers is presented. Instead of using an usual L-C matching circuit, a small-sized transformer was implemented on the LTCC board and the results were verified through simulation. For reduced size and better performance, a TF using more metal layers was implemented and compared with the existing TF through simulation. As a result of comparison, the proposed TF has an area reduced by 55% and a coupling coefficient increased by 25%, and insertion loss improvement of about 0.4dB at 5GHz was confirmed.

본 논문에서는 차동 전력증폭기 출력단에서의 전력 결합 및 임피던스 정합을 위한 LTCC 기반의 RF 트랜스포머를 제시하였다. 기존의 인덕터와 커패시터를 이용한 정합회로 대신 회로의 면적을 덜 차지하며 직류 차단의 역할을 수행하는 트랜스포머를 LTCC 기판에 구현하고 시뮬레이션을 통해 결과를 검증하였다. 트랜스포머의 다운사이징과 결합계수의 개선을 위해 기판의 더 많은 금속층을 사용하는 트랜스포머를 구현하고 시뮬레이션을 통해 기존의 트랜스포머와 성능을 비교하였다. 3개의 금속층을 사용한 기존의 트랜스포머와 5개의 금속층을 사용한 변형된 트랜스포머를 비교한 결과 새롭게 제시한 트랜스포머가 55% 감소된 면적과 25% 증가한 결합계수를 가지며 5GHz에서 약 0.4dB의 삽입손실 개선을 확인하였다.

Keywords

Acknowledgement

This study was supported by "2021 Academic Research Support Program in Gangneung-Wonju National University" and "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2022RIS-005).

References

  1. J. Kang et al., "A highly linear and efficient differential CMOS power amplifier with harmonic control," IEEE J. Solid-State Circuits, vol.41, no.6, pp.1314-1322, 2006. DOI: 10.1109/JSSC.2006.874276
  2. J. Pang et al., "A 28 GHz CMOS phased-array transceiver featuring gain invariance based on LO phase shifting architecture with 0.1degree beam-steering resolution for 5G new radio," proc. IEEE RF Integr. Circuits Symp., pp.56-59, 2018. DOI: 10.1109/RFIC.2018.8428985
  3. N. Ryu, B. Park and Y. Jeong, "A Fully Integrated High Efficiency RF Power Amplifier for WLAN Application in 40 nm Standard CMOS Process," IEEE Microw. Wireless compon. Lett., vol.25, no.6, pp.382-384, 2015. DOI: 10.1109/LMWC.2015.2421351
  4. A. R. Ghorbani and M. B. Ghaznavi-Ghoushchi, "A 35.6dB, 43.3% PAE class E differential power amplifier in 2.4GHz with cross coupling neutralization for IoT applications," 2016 24th Iranian Conference on Electrical Engineering (ICEE), pp.490-495, 2016. DOI: 10.1109/IranianCEE.2016.7585571
  5. Ezzulddin, Ahmed Saadoon, Mohammed Hussain Ali, and Mutaz Shunasi Abdulwahab. "On-chip RF transformer performance improvement technique," Engineering and Technology Journal, vol.28, no.4, pp.676-685, 2010. DOI: 10.30684/etj.28.4.4