DOI QR코드

DOI QR Code

Current Status and Prospects of Eco-friendly Disposal Processes for Waste Explosives

폐화약류의 친환경적 폐기처리 공정의 최근 현황 및 전망

  • Tae Ho Kim (Department of Converging Science and Technology, Dong-A University) ;
  • Deok Yeol Kim (Department of Chemical Engineering, Dong-A University) ;
  • Jong Min Kim (Department of Chemical Engineering, Dong-A University)
  • 김태호 (동아대학교 융합과학기술학과) ;
  • 김덕열 (동아대학교 화학공학과) ;
  • 김종민 (동아대학교 화학공학과)
  • Received : 2023.01.11
  • Accepted : 2023.03.08
  • Published : 2023.03.31

Abstract

Waste explosives such as useless ammunition discharged from the military and coproduced useless explosives during the manufacturers production process have been continuously produced. These are difficult to dispose with normal waste treatment facilities due to the dangers of fire and explosion. An open burning or an open detonation at military designated disposal facilities is a classical treatment method for the dangerous explosives. The classical method raises various environmental problems by the emission of hazardous materials. An air pollution by the emission of hazardous gases such as SOx and NOx, soil and water contaminations by the accumulation of non-biodegradable heavy metals, are representative pollution examples. To overcome these problems, various processes for eco-friendly waste treatment methods have been developed, and some processes have already been operated in some countries. In the current report, various eco-friendly disposal processes for waste explosives or harmful materials, and their advantages and disadvantages are documented to suggest future development directions for reducing the hazardous substances by the treatment processes.

군에서의 폐탄약 및 제조업체에서 생산 중에 발생되는 불용화약 등 폐화약류는 지속적으로 발생되고 있다. 이들은 화재, 폭발 등을 유발하는 화약류의 위험성으로 일반 폐기물 처 리시설에서는 처리가 어려우며, 지정된 폐기처리시설에서 야외 소각 및 기폭처리를 하는 것이 고전적인 폐기처리 방법이다. 야외에서의 소각 및 기폭을 통한 폐기처리시에는 SOx, NOx와 같은 유해물질의 배출에 의한 대기오염, 중금속 및 난분해성 물질로 인한 토양 및 수질 오염 등 다양한 환경문제를 유발시킨다. 이러한 환경문제를 극복하기 위한 친환경적인 다양한 폐기처리 방안이 개발되고 있으며, 일부 국가에서 운영중에 있다. 본고에서는 폐화약류의 다양한 친환경적인 폐기처리 공정 및 각 공정에 있어서의 장, 단점을 소개하여 폭발성 위험물 및 유해물질처리의 향후 연구방향을 제안하고자 한다.

Keywords

References

  1. Lee, S. H., Baek, S. W., Moon, I., Park, J. S., and Oh, M., "Incineration Process of Double Base Propellant for Demilitarization," Clean Technol., 22(3), 191(2016).
  2. Lee, J. C., Park, B. S., and Go, B. N., "Analysis of the technical status of ammunition demilitization-disposal of waste and insoluble coal, how to do it," Defense & Technology, 2, 35-36 (2001).
  3. Kim, S. H. and Han, S. H., "Review of demilitarization & disposal technics for ammunitions," Kstee, 126 (2009).
  4. Korea police., "Guns, Swords, and Explosives Safety Management law" (2021).
  5. Lee, J. C., Park, B. S., and Go, B. N., "Analysis of the technical status of ammunition demilitization-disposal of waste and insoluble coal, how to do it," Defense & Technology, 2, 34 (2001).
  6. Park, J. E., Bae, B. H., "Distribution and Migration Characteristics of Explosive Compounds in Soil at Military Shooting Ranges in Gyeonggi Province," Journal of the Korean Geo-Environmental Society, 15(6), 17-18 (2014). https://doi.org/10.14481/jkges.2014.15.6.17
  7. Jang, G. H., Baek, B. H., and Seo, N. S., "Eco-friendly waste ammunition demilitization development plan by applying high-temperature plasma technology," Defense & Technology, 400, 114(2012).
  8. Lee, S. H., Baek, S. W., Moon, I., Park, J. S., Kim, H. S., and Oh, M., "Incineration for Demilitarization of Waste Cyclotol," Journal of the KIMST, 19(4), 546 (2016).
  9. https://frtr.gov/matrix/MEC-Contained-Detonation-Chamber (accessed May 2022).
  10. Wilkinson, J., "Review of demilitarization and disposal techniques for munitions and related materials," MASIC, L-118, 48 (2006).
  11. Kim, H. J. and Park, T. J., "Eco-friendly waste ammunition sealed detonation treatment device equipped with pollution prevention device and method therefor," Korea Patent No. 10-1420167, (2014).
  12. Kim, S. C., Kwon, M. H., Song, G. J., and Jeong, S. G., "A Study on the Characteristics Variation of Bottom Ashes from MSWIs Using the Different Process for the Removal of NOx by Natural Aging Treatment," Journal of KSWM, 23(3), 181-189 (2006).
  13. Kiyoshi Asahina, Ryusuke Kitamura, and Masato Katayama, Tsuyoshi Imakita, Masaya Ueda, "Study on controlled detonation chamber system of chemical weapons : A study on destruction efficiency of chemical warfare materials by controlled detonations," Sci. Tech. Energetic Materials, 68(2), 41-47 (2007).
  14. Lee, S. H., Baek, S. W., Moon, I., Park, J. S., and Oh, M., "Incineration Process of Double Base Propellant for Demilitarization," Clean Technol., 22(3), 191 (2016).
  15. Kim, H. S., "Basic Technologies for the Development of High Explosives," Korea Chem. Eng. Res., 44(5), 441-442 (2006).
  16. Wilkinson, J., "Review of demilitarization and disposal techniques for munitions and related materials," MASIC, L-118, 55-56 (2006).
  17. Park, J. S., "A Study on the Detonation Behavior of Insensitive Explosive by Experiments and Computational Simulations," Ph.D. Dissertation, KAIST (2011).
  18. EL DORADO ENGINEERING, INC., "EXPLOSIVE WASTE INCINERATOR"
  19. Kim, T. H., An, I. H., and Kim, J. M., "Development of Eco-friendly Combustion Process for Waste 2,4,6-trinitrotoluene," Clean Technol., 27(3), 249-250(2021).
  20. https//ko.wikipedia.org/wiki (accessed May 2022).
  21. Han, S. H., "Large scale treatment of PFCs gases using a thermal plasma scrubber," Ph.D. Dissertation, University of Inha, Incheon (2010).
  22. Jang, G. H., Baek, B. H., and Seo, N. S., "Development plan of Demilitarization for Waste Ammunition by High-temperature Plasma Technology," Defense & Technology, 400, 116-118 (2012).
  23. Park, H. W., Cha, W. B., and Uhm, S. H., "Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs)," Appl. Chem. Eng., 29(1), 10-17 (2018).
  24. Wilkinson, J., "Review of demilitarization and disposal techniques for munitions and related materials," MASIC, L-118, 58 (2006).
  25. Park, S. H., "About Fluidized Bed Incinerators," Korean Society Mechanical Engineers, 35(7), 622 (1995).
  26. Cho, S. H., Park, C. H., Lee, J. H., Lyu, B, G., and Moon, I., "Finding the best operating condition in a novel process for explosive waste incineration using fluidized bed reactors," Computer and Chemical Engineering, 142, 1-5 (2020). https://doi.org/10.1016/j.compchemeng.2020.107054
  27. https://dlstudy.tistory.com/10(accessed July 2022).
  28. Camila L, Madeira., Warren M, Kadoya., Guangbin, Li., and Stanley, W., "Reductive biotransformation as a pretreatment to enhance in situ chemical oxidation of nitroaromatic and nitroheterocyclic explosives," Chemosphere, 222, 1025-1032 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.178
  29. John F. Cooper., and G. Bryan Balazs., "Final Report: Fiscal Year 1997 Demonstration of Omnivorous Non-Thermal Mixed Waste Treatment: Direct Chemical Oxidation of Organic Solids and Liquids using Peroxydisulfate," Lawrence Livermore National Laboratory, DCO Final Report FY97, 1 (1997).
  30. Park, J. H., Shin, W. M., and Lee, J. W., "Review on the TNT Dosposal," Journal of the KIMST, 19(1), 130 (2016).
  31. John F. Cooper., and G. Bryan Balazs., "Final Report: Fiscal Year 1997 Demonstration of Omnivorous Non-Thermal Mixed Waste Treatment: Direct Chemical Oxidation of Organic Solids and Liquids using Peroxydisulfate," Lawrence Livermore National Laboratory, DCO Final Report FY97, 39-41 (1997).
  32. Korneliusz, Miksch., and Katarzyna, Panz., "Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants," J. Environ. Manage., 113, 85-92 (2012). https://doi.org/10.1016/j.jenvman.2012.08.016
  33. Kim, S. Y., Back, K. H., Lee, I. S., Bae, B. H., and Jang, Y. Y., "A Column Study on Phytoremediation of 2,4,6-Trinitrotoluene (TNT) Contaminated Roil," J. Korean Soc. Environ. Eng., 24(11), 2039-2046 (2002).
  34. Ensley, B. D., and Raskin, I., "Phytoremediation of Toxic Metals: using Plants to Clean up the Environment," Wiley & Sons, New York, 304 (2000).
  35. Park, J. H., Shin, W. M., and Lee, J. W., "Review on the TNT Dosposal," Journal of the KIMST, 19(1), 132 (2016).
  36. Ahmed Ibrahim Jessim., "Biodegradation of explosive material 2,4,6-Trinitrotoluene (TNT)," J. Bacteriol. Mycol., 6(2), 116-120 (2018). https://doi.org/10.15406/jbmoa.2018.06.00187
  37. Park, C. W., Kim, T. H., and Kim, S. Y., "Bioremediation of 2,4,6-Trinitrotoluene Contaminated Soil in Slurry and Column Reactors," J. Biosci. Bioeng., 96(5), 429-433 (2003). https://doi.org/10.1016/S1389-1723(03)70127-3
  38. U.S. Environmental Protection Agency., "Recommended methods of reduction, neutralization, recovery or disposal of hazardous waste," EPA-670/2-73-053-g, 129 (1973).
  39. U.S ARMY MATERIEL COMMAND., "Explosives series properties of explosives of military interest," AMCP 706-177, 196 (1971).
  40. Gabriel W. and Desmare Dillard M., "DMSO/BASE HYDROLYSIS METHOD FOR THE DISPOSAL OF HIGH EXPLOSIVES AND RELATED ENERGETIC MATERIALS," United States Patent No. US 6,388,164 B1, (2002)
  41. Robert L BISHOP., CARY SKIDMORE., "BASE HYDROLYSIS KINETICS OF HMX BASED EXPLOSIVES USING SODIUM CARBONATE," Los Alamos NATIONAL LABORATORY, (1996).
  42. R. Flesner., P. DellOrco., and J.Kramer., "Pilot-Scale Base Hydrolysis Processimg of HMX-Based Plastic-Bonded Explosives," Int. J. Energetic Mater. Chem. Propul., 4, 213-220 (1996). https://doi.org/10.1615/IntJEnergeticMaterialsChemProp..v4.i1-6.250
  43. U.S. Environmental Protection Agency., "Recommended methods of reduction, neutralization, recovery or disposal of hazardous waste," EPA-670/2-73-053-g, 131 (1973)
  44. Polson J., "Electrolysis of Lead Azide," Department of Army(USA) (1979).