Acknowledgement
본 연구는 보건복지부의 재원으로 한국보건산업진흥원의 보건의료기술 연구개발사업(HI18C1216), 그리고 한국 연구재단(NRF-2021R1A5A 8029876)(NRF-2020R1I1A1A01074256)의 지원으로 수행함.
References
- J.-Y. Lim, "Consensus update on definition and diagnosis for sarcopenia," Geriatric Rehabilitation, Vol.10, No.2, pp.39-45, 2020.
- G. Grimby and B. Saltin, "The ageing muscle," Clin Physiol, Vol.3, No.3, pp.209-18, 1983. doi: 10.1111/j.1475-097x.1983.tb00704 .x. PMID: 6347501.
- A. J. Cruz-Jentoft et al., "Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People," Age Ageing, Vol.39, No.4, pp.412-23, 2010. doi: 10.1093/ageing/afq034. Epub 2010 Apr 13. PMID: 20392703; PMCID: PMC2886201.
- O. Wallengren et al., "Comparison of the 2010 and 2019 diagnostic criteria for sarcopenia by the European Working Group on Sarcopenia in Older People (EWGSOP) in two cohorts of Swedish older adults," BMC Geriatr, Vol.21, No.1, pp.600, 2021. https://doi.org/10.1186/s12877-021-02533-y.
- L. K. Chen et al., "Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia," Journal of the American Medical Directors Association, Vol.15, No.2, pp.95-101, 2014. https://doi.org/10.1016/j.jamda.2013.11.025
- L. K. Chen et al., "Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment," Journal of the American Medical Directors Association, Vol.21, No.3, pp.300-307, e2, 2020. https://doi.org/10.1016/j.jamda.2019.12.012
- C.-S. Lee et al., "Implementation of medical image labeling web application for machine learning," Proceedings of the Korea Information Processing Society Conference, pp.602-605. 2021, doi:10.3745/PKIPS.Y2021M11A.602.
- R. B. Parikh, Z. Obermeyer, and A. S. Navathe, "Regulation of predictive analytics in medicine," Science, Vol.363, No. 6429, pp.810-812, 2019. doi:10.1126/science.aaw0029.
- C. L Ramspek, K. J. Jager, F. W. Dekker, C. Zoccali, and M. van Diepen, "External validation of prognostic models: What, why, how, when and where," Clinical Kidney Journal, Vol.14, Iss.1, pp.49-58, 2021. https://doi.org/10.1093/ckj/sfaa188.
- S. E. Bleeker et al., "External validation is necessary in prediction research: A clinical example," Journal of clinical epidemiology, Vol.56, No.9, pp.826-832, 2003. https://doi.org/10.1016/S0895-4356(03)00207-5
- L. L. G. C. Ackermans et al., "Screening, diagnosis and monitoring of sarcopenia: When to use which tool?" Clinical Nutrition ESPEN, Vol.48, pp.36-44, 2022. https://doi.org/10.1016/j.clnesp.2022.01.027
- V. E. Baracos, V. C. Mazurak, and A. S. Bhullar, "Cancer cachexia is defined by an ongoing loss of skeletal muscle mass," Annals of Palliative Medicine, Vol.8, No.1, pp.3-12, 2018. https://doi.org/10.21037/apm.2018.12.01
- M. T. Imboden, A. M. Swartz, H. W. Finch, M. P. Harber, and L. A. Kaminsky, "Reference standards for lean mass measures using GE dual energy x-ray absorptiometry in Caucasian adults," PLoS One, Vol.12, No.4, Article e0176161, 2017.
- K. Engelke, O. Museyko, L. Wang, and J.-D. Laredo, "Quantitative analysis of skeletal muscle by computed tomography imaging-state of the art," Journal of orthopaedic translation, Vol.15, pp.91-103, 2018. https://doi.org/10.1016/j.jot.2018.10.004
- S. Bamba et al., "Sarcopenia is a predictive factor for intestinal resection in admitted patients with Crohn's disease," PLoS One, Vol.12, Vol.6, e0180036, 2017.
- R. Hemke, C. G. Buckless, A. Tsao, B. Wang, and M. Torriani, "Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment," Skeletal Radiology, Vol.49, No.3, pp.387-395, 2020. https://doi.org/10.1007/s00256-019-03289-8
- L. Boeri et al., "Hounsfield unit attenuation value can differentiate pyonephrosis from hydronephrosis and predict septic complications in patients with obstructive uropathy," Scientific Reports, Vol.10, No.1, pp.18546, 2020. https://doi.org/10.1038/s41598-020-75672-8.
- J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Networks, Vol.61, pp.85-117, 2015. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct. 13. PMID:25462637.
- O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," arXiv preprint arXiv:1505.04597, 2015. 5.
- S.-H. Noh et al., "Development of image segmentation model for sarcopenia diagnosis and its application," Proceedings of the Korea Information Processing Society Conference, pp.577-79, 2021, doi:10.3745/PKIPS.Y2021M11A.577.
- C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, "Generalized dice overlap as a deep learning loss function for highly unbalanced segmentations," in Proceeding of Deep Learning in Medical Image Analysis and Multimodal Laerning for Clinical Decision Support, pp.240-248, 2017.
- Z. Zhang and M. Sabuncu, "Generalized cross entropy loss for training deep neural networks with noisy labels," arXiv preprint arXiv:1805.07836, 2018.
- J. M. Johnson and T. M. Khoshgoftaar, "Survey on deep learning with class imbalance," Journal of Big Data, Vol.6, No.1, pp.1-5, 2019. https://doi.org/10.1186/s40537-019-0192-5.
- M. Buda, A. Maki, and M. A. Mazurowski, "A systematic study of the class imbalance problem in convolutional neural networks," CoRR abs/1710.05381 arXiv:1710.05381, 2017. http://arxiv.org/abs/1710.05381.
- H. J. Park et al., "Development and validation of a deep learning system for segmentation of abdominal muscle and fat on computed tomography," Korea Journal of Radiology, Vol.21, No.1, pp.88-100, 2020. http://doi.org/10.3348/kjr.2019.0470.