DOI QR코드

DOI QR Code

Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application

커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용

  • Dong Hyun Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Min Sang Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Suk Jekal (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jiwon Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ha-Yeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yeon-Ryong Chu (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Chan-Gyo Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Hyung Sub Sim (Department of Aerospace Engineering, Sejong University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 김동현 (한밭대학교 화학생명공학과) ;
  • 김민상 (한밭대학교 화학생명공학과) ;
  • 제갈석 (한밭대학교 화학생명공학과) ;
  • 김지원 (한밭대학교 화학생명공학과) ;
  • 김하영 (한밭대학교 화학생명공학과) ;
  • 추연룡 (한밭대학교 화학생명공학과) ;
  • 김찬교 (한밭대학교 화학생명공학과) ;
  • 심형섭 (세종대학교 항공우주공학과) ;
  • 윤창민 (한밭대학교 화학생명공학과)
  • Received : 2023.02.16
  • Accepted : 2023.03.05
  • Published : 2023.03.30

Abstract

In this study, coffee waste was recycled into nitrogen-doped porous carbon fibers as an active material for high-energy EDLC (Electric Double Layer Capacitors). The coffee waste was mixed with polyvinylpyrrolidone and dissolved into dimethylformamide. The mixture was then electrospun to fabricate coffee waste-derived nanofibers (Bare-CWNF), and carbonization process was followed under a nitrogen atmosphere at 900℃. Similar to Bare-CWNF, the as-synthesized carbonized coffee waste-derived nanofibers (Carbonized-CWNF) maintained its fibrous form while preserving the composition of nitrogen. The electrochemical performance was analyzed for carbonized coffee waste (Carbonized-CW)-, carbonized PAN-derived nanofibers (Carbonized-PNF)-, and Carbonized-CWNF-based electrodes in the operating voltage window of -1.0-0.0V, Among the electrodes, Carbonized-CWNF-based electrodes exhibited the highest specific capacitance of 123.8F g-1 at 1A g-1 owing to presence of nitrogen and porous structure. As a result, nitrogen-contained porous carbon fibers synthesized from coffee waste showed excellent electrochemical performance as electrodes for high-energy EDLC. The experimental designed in this study successfully demonstrated the recycling of the coffee waste, one of the plant-based biomass that causes the environmental pollution into high-energy materials, also, attaining the ecofriendliness.

본 연구에서는 커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유 형태로 제조하여 고에너지 EDLC용 탄소 소재로 활용하고자 하였다. 커피 폐기물은 분쇄과정을 거쳐 폴리비닐피롤리돈과 용매인 다이메틸폼아마이드에 혼합한 후 전기방사를 통해 커피 폐기물 기반의 섬유 형태(Bare-CWNF)의 물질로 만들었으며, 질소 분위기의 900℃에서 탄화를 진행하여 커피 폐기물 기반의 질소가 포함된 다공성 섬유 형태(Carbonized-CWNF)의 물질을 제조하였다. Carbonized-CWNF는 Bare-CWNF와 같이 섬유 형태를 유지하였으며 질소 함량 역시 유지되는 것을 확인하였다. 커피 폐기물의 탄화 탄소(Carbonized-CW)및 폴리아크릴로나이트릴 기반의 탄소섬유(Carbonized-PNF)를 Carbonized-CWNF와 -1.0-0.0V의 전압 범위에서 전기화학적 성능을 비교한 결과, Carbonized-CWNF가 가장 높은 비정전용량(123.8F g-1 @ 1A g-1)을 확보할 수 있었다. 이를 통해 커피 폐기물 기반의 질소가 함유된 다공성 탄소 섬유가 고에너지 EDLC(Electric double layer capacitor)용 전극으로 우수한 성능을 나타내는 것을 확인하였다. 최종적으로, 환경 오염의 원인이 되는 식물성 바이오매스 중 커피 폐기물을 활용하여 친환경성을 확보하였고, 식물성 바이오매스와 같은 폐기물을 슈퍼커패시터와 같은 고성능 에너지 저장 매체로의 탈바꿈 할 수 있는 가능성을 제시하였다.

Keywords

Acknowledgement

이 연구는 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)

References

  1. Seow, Y. X., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Ibrahim, M. L. and Ghasemi, M., "A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications", Journal of Environmental Chemical Engineering, 10(1), p. 107017. (2022).
  2. Pacheco, R. and Silva, C., "Global Warming Potential of Biomass-to-Ethanol: Review and Sensitivity Analysis through a Case Study", Energies, 12(13), p. 2535. (2019).
  3. Sri, S. S., Palanivelu, K., Ramachandran, A. and Raghavan, V., "Biochar from biomass waste as a renewable carbon materialfor climate change mitigation in reducing greenhouse gasemissions - a review", Biomass Conversion and Biorefinery, 11(5), pp. 2247~2267. (2021). https://doi.org/10.1007/s13399-020-00604-5
  4. Bae, I.-H., "A Study on Success Factor of Coffee Bean Roasting Industry: Focus on Multi Pacific Co. Ltd.", Journal of Culture Industry, 15(2), pp. 83~88. (2015).
  5. Serna-Jimenez, J. A., Siles, J. A., Martin, M. A. and Chica, A. F., "A Review on the Applications of Coffee Waste Derived from Primary Processing: Strategies for Revalorization", Processes, 10(11), p. 2436. (2022).
  6. Kim, D.-H., Suen, Y.-B. and Lin, S.-C., "Carbon dioxide emissions and trade: Evidence from disaggregate trade data", Energy Economics, 78, pp. 13~28. (2019). https://doi.org/10.1016/j.eneco.2018.08.019
  7. Kim, J., Jekal, S., Kim, D. H. and Yoon, C.-M., "Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application", Journal of the Korea Organic Resources Recycling Association, 30(2), pp. 5~15. (2022).
  8. Vijayakumar, M., Bharathi Sankar, A., Sri Rohita, D., Rao, T. N. and Karthik, M., "Conversion of Biomass waste into High Performance Supercapacitor Electrodes for Real-Time Supercapacitor Applications", ACS Sustainable Chemistry and Engineering, 7(20), pp. 17175~17185. (2019). https://doi.org/10.1021/acssuschemeng.9b03568
  9. Gopalakrishnan, A. and Badhulika, S., "Effect of self-doped heteroatoms on the performance of biomass-derived carbon fro supercapacitor applications", Journal of Power Sources, 480, p. 228830. (2020).
  10. Zhao, X., Johnston, C. and Grant, P. S., "A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode", Journal of Materials Chemistry, 19(46), pp. 8755~8760. (2009). https://doi.org/10.1039/b909779a
  11. Iamprasertkun, P., Tanggarnjanavalukul, C., Krittayavathananon, A., Khuntilo, J., Chanlek, N., Kidkhunthod, P. and Sawangphruk, M., "Insight into charge storage mechanisms of layered MnO2 nanosheets for supercapacitor electrodes: In situ electrochemical X-ray absorption spectroscopy", Electrochimica Acta, 249, pp. 26~32. (2017). https://doi.org/10.1016/j.electacta.2017.08.002
  12. Alabadi, A., Razzaque, S., Dong, Z., Wang, W. and Tan, B., "Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor", Journal of Power Sources, 306, pp. 241~247. (2016). https://doi.org/10.1016/j.jpowsour.2015.12.028
  13. Rajeswari, V., Jayavel, R. and Clara Dhanemozhi, A., "Synthesis And Characterization Of Graphene-Zinc Oxide Nanocomposite Electrode Material For Supercapacitor Applications", Materials Today: Proceedings, 4(2), pp. 645~652. (2017). https://doi.org/10.1016/j.matpr.2017.01.068
  14. Liu, T., Finn, L., Yu, M., Wang, H., Zhai, T., Lu, X., Tong, Y. and Li, Y., "Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability", Nano Letters, 14(5), pp. 2522~2527. (2014). https://doi.org/10.1021/nl500255v
  15. Muzaffar, A., Ahamed, M. B., Deshmukh, K. and Thirumalai, J., "A review on recent advances in hybrid supercapacitor: Design, fabrication and applications", Renewable and Sustainable Energy Reviews, 101, pp. 123~145. (2019). https://doi.org/10.1016/j.rser.2018.10.026
  16. Faraji, S. and Ani, F. N., "The development supercapacitor from activated carbon by electroless plating - A review", Renewable and Sustainable Energy Reviews, 42, pp. 823~834. (2015). https://doi.org/10.1016/j.rser.2014.10.068
  17. Guo, C. X. and Li, C. M., "A self-assembled hierarchical nanostructure comprising carbon spheres and graphenenanosheets for enhanced supercapacitor performance", Energy and Environmental Science, 4(11), pp. 4504~4507.
  18. Dujearic-Stephane, K., Gupta, M., Kumar, A., Sharma, V., Pandit, S., Bocchetta, P. and Kumar, Y., "The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability", Journal of Composites Science, 5(3), p. 66. (2021).
  19. Li, C., Zhang, X., Wang, K., Su, F., Chen, C.-M., Liu, F., Wu, Z.-S. and Ma, Y., "Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors", Journal of Energy Chemistry, 54, pp. 352~367. (2021). https://doi.org/10.1016/j.jechem.2020.05.058
  20. Kenry and Lim, C. T., "Nanofiber technology: current status and emerging developments", Progress in Polymer Science, 70, pp. 1~17. (2017). https://doi.org/10.1016/j.progpolymsci.2017.03.002
  21. Chen, C., Fu, K., Lu, Y., Zhu, J., Xue, L., Hu, Y. and Zhang, X., "Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries", RSC Advances, 5(39), pp. 30793~30800. (2015). https://doi.org/10.1039/C5RA01729G
  22. Gu, S. Y., Ren, J. and Wu, Q. L., "Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers", Synthetic Metals, 155(1), pp. 157~161. (2005). https://doi.org/10.1016/j.synthmet.2005.07.340
  23. Liu, Y., Haridas, A. K., Lee, Y., Cho, K.-K. and Ahn, J.-H., "Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries", Applied Surface Science, 472, pp. 135~142. (2019). https://doi.org/10.1016/j.apsusc.2018.03.062
  24. Liu, Y., Zhang, X., Gu, X., Wu, N., Zhang, R., Shen, Y., Zheng, B., Wu, J., Zhang, W., Li, S. and Huo, F., "One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization", Microporous and Mesoporous Materials, 303, p. 110303. (2020).
  25. Pan, G., Cao, F., Zhang, Y. and Xia, X., "N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors", Journal of Materials Science and Technology, 55, pp. 144~151. (2020). https://doi.org/10.1016/j.jmst.2019.10.004
  26. Panomsuwan, G., Chiba, S., Kaneko, Y., Saito, N. and Ishizaki, T., "In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for oxygen reduction reaction", Journal of Materials Chemistry A, 2(43), pp. 18677~18686. (2014). https://doi.org/10.1039/C4TA03010A
  27. Sevilla, M., Valle-Vigon, P. and Fuertes, A. B., "N-doped Polypyrrole-Based Porous Carbons for CO2 Capture", Advanced Functional Materials, 21(14), pp. 2781~2787.
  28. Pandey, K. and Jeong, H. K., "Coffee waste-derived porous carbon based flexible supercapacitors", Chemical Physics Letters, 809, p. 140173. (2022).
  29. Jekal, S., Kim, M.-S., Kim, D.-H., Noh, J., Kim, H.-Y., Kim, J., Yi, H., Oh, W.-C. and Yoon, C.-M., "Fabrication of Flexible All-Solid-State Asymmetric Supercapacitor Device via Full Recycling of Heated Tobacco Waste Assisted by PLA Gelation Template Method", Gels, 9(2), p. 97. (2023).
  30. Pujol, D., Liu, C., Gominho, J., Olivella, M. A., Fiol, N., Villaescusa, I. and Pereira, H., "The chemical composition of exhausted coffee waste", Industrial Crops and Products, 50, pp. 423~429. (2013). https://doi.org/10.1016/j.indcrop.2013.07.056
  31. Baratloo, A., Rouhipour, A., Forouzanfar, M. M., Safari, S., Amiri, M. and Negida, A., "The Role of Caffeine in Pain Management: A Brief Literature Review", Anesthesiology and Pain Medicine, 6(3), p. e33193. (2016).
  32. Vuong Hoai, T., Nguyen Cao, P., Phan Le Thao, M., Do, T. D., Hoang Minh, N., Ha, H. K. P., Mai Thanh, P. and Nguyen Huu, H., "Ultrasound-Assisted Enzymatic Extraction of Adenosine from Vietnamese Cordyceps militaris and Bioactivity Analysis of the Extract", Journal of Chemistry, 2020, p. 1487654. (2020).
  33. Galal, A., Hassan, H. K., Jacob, T. and Atta, N. F., "Enhancing the specific capacitance of SrRuO3 and reduced graphene oxide in NaNO3, H3PO4 and KOH electrolytes", Electrochimica Acta, 260, pp. 738~747. (2018). https://doi.org/10.1016/j.electacta.2017.12.026
  34. Vijayakumar, S., Lee, S.-H. and Ryu, K.-S., "Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance", Electrochimica Acta, 182, pp. 979~986. (2015). https://doi.org/10.1016/j.electacta.2015.10.021
  35. Aziz, A. A., Ghazali, M. H. S. M., Zakri, M. R., Kadir, R. A. and Burham, N., "Influence of PVP concentration and mixed solvents on the morphology of SnO2 nanofibers via electrospinning", AIP Conference Proceedings, 2306, p. 020030. (2020).
  36. He, X., Shi, J., Hao, Y., He, M., Cai, J., Qin, X., Wang, L. and Yu, J., "Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing", Carbon Energy, 4(4), pp. 621~632. (2022). https://doi.org/10.1002/cey2.186
  37. Hameed, N., Sharp, J., Nunna, S., Creighton, C., Magniez, K., Jyotishkumar, P., Salim, N. V. and Fox, B., "Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization", Polymer Degradation and Stability, 128, pp. 39~45. (2016). https://doi.org/10.1016/j.polymdegradstab.2016.02.029
  38. Chitta, R., Pendela, M., Yekkala, R., Herijgers, P., Hoogmartens, J. and Adams, E., "Determination of adenosine and inosine in sheep plasma using solid phase extraction followed by liquid chromatography with uv detection", Analytical Letters, 43(14), pp. 2267~2274. (2010). https://doi.org/10.1080/00032711003717323
  39. Belay, A., "Some biochemical compounds in coffee beans and methods developed for their analysis", International Journal of the Physical Sciences, 6(28), pp. 6373~6378.
  40. Xu, W., Xin, B. and Yang, X., "Carbonization of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hybrid membranes and its mechanism", Cellulose, 27(7), pp. 3789~3804. (2020). https://doi.org/10.1007/s10570-020-03006-y
  41. Mengesha, D. N., Abebe, M. W., Appiah-Ntiamoah, R. and Kim, H., "Ground coffee waste-derived carbon for adsorptive removal of caffeine: Effect of surface chemistry and porous structure", Science of the Total Environment, 818, p. 151669. (2022).
  42. Abasi, C. Y., Wankasi, D. and Dikio, E. D., "Adsorption Study of Lead(II) Ions on Poly(methyl methacrylate) Waste Material", Asian Journal of Chemistry, 30(4), pp. 859~867. (2018). https://doi.org/10.14233/ajchem.2018.21112
  43. Sanchez, C. O., Sobarzo, P., Gatica, N. and MacLeod-carey, D., "New fluorescent crosslinked aromatic polyamides containing thiopheneand furane in their backbone", Journal of the Chilean Chemical Society, 60(3), pp. 3040~3044. (2015). https://doi.org/10.4067/S0717-97072015000300014
  44. Goudarzi, M., Mir, N., Mousavi-Kamazani, M., Bagheri, S. and Salavati-Niasari, M., "Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods", Scientific Reports, 6, p. 32539. (2016).
  45. Li, W., Song, B., Zhang, S., Zhang, F., Liu, C., Zhang, N., Yao, H. and Shi, Y., "Using 3-Isocyanatopropyltrimethoxysilane to Decorate Graphene Oxide with Nano-Titanium Dioxide for Enhancing the Anti-Corrosion Properties of Epoxy Coating", Polymers, 12(4), p. 837. (2020).
  46. Xing, P., Zhou, F. and Li, Z., "Preparation of WO3/g-C3N4 composites with enhanced photocatalytic hydrogen production performance", Applied Physics A: Materials Science and Processing, 125(11), p. 788. (2019).
  47. Dong, Y.-Y., Zhu, Y.-H., Ma, M.-G., Liu, Q. and He, W.-Q., "Synthesis and characterization of Ag@ AgCl-reinforced cellulose composites with enhanced antibacterial and photocatalytic degradation properties", Scientific Reports, 11(1), p. 3366. (2021).
  48. Lu, X., Ross, C. F., Powers, J. R. and Rasco, B. A., "Determination of quercetins in onion (Allium cepa) using infrared spectroscopy", Journal of Agricultural and Food Chemistry, 59(12), pp. 6376~6382.
  49. Yang, Q., Li, X., Xue, Z., Li, Y., Jiang, M. and Zeng, S., "Short-wave near-infrared emissive GdPO4: Nd3+ theranostic probe for: In vivo bioimaging beyond 1300 nm", RSC Advances, 8(23), pp. 12832~12840. (2018). https://doi.org/10.1039/C7RA12864A
  50. Karacan, I. and Erzurumluoglu, L., "The effect of carbonization temperature on the structure and properties of carbon fibers prepared from poly (m-phenylene isophthalamide) precursor", Fibers and Polymers, 16(8), pp. 1629~1645. (2015). https://doi.org/10.1007/s12221-015-5030-6
  51. Jaruwat, D., Udomsap, P., Chollacoop, N., Fuhi, M. and Eiad-Ua, A., "Effects of hydrothermal temperature and time of hydrochar from Cattail leaves", AIP Conference Proceedings, 2010, p. 020016. (2018).
  52. Lan, Y. and Chen, D., "The effects of carbonization conditions on electrochemical performance of attapulgite-based anode material for lithium-ion batteries", Journal of Materials Science: Materials in Electronic, 30, pp. 10342~10351. (2019). https://doi.org/10.1007/s10854-019-01372-3
  53. Misnon, I. I., Aziz, R. A., Zain, N. K. M., Vidhyadharan, B., Krishnan, S. G. and Jose, R., "High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes", Materials Research Bulletin, 57, pp. 221~230. (2014). https://doi.org/10.1016/j.materresbull.2014.05.044
  54. Aderyani, S., Flouda, P., Shah, S. A., Green, M. J., Lutkenhaus, J. L. and Ardebili, H., "Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior", Electrochimica Acta, 390, p. 138822. (2021).
  55. Wang, J.-R., Wan, F., Lu, Q.-F., Chen, F. and Lin, Q., "Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: Effect of pyrolysis temperature and high electrochemical performance", Journal of Materials Science and Technology, 34(10), pp. 1959~1968. (2018).
  56. Tran, C. and Kalra, V., "Co-continuous nanoscale assembly of Nafion-polyacrylonitrile blends within nanofibers: a facile route to fabrication of porous nanofibers", Soft Matter, 9(3), pp. 846~852. (2013). https://doi.org/10.1039/C2SM25976A
  57. Mishra, R. K., Baek, G. W., Kim, K. and Kwon, H.-I., "One-step solvothermal synthesis of carnation flower-like SnS2 as superior electrodes for supercapacitor applications", Applied Surface Science, 425, pp. 923~931. (2017). https://doi.org/10.1016/j.apsusc.2017.07.045
  58. Zhang, D., Zhang, X., Chen, Y., Yu, P., Wang, C. and Ma, Y., "Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors", Journal of Power Sources, 196(14), pp. 5990~5996. (2011).  https://doi.org/10.1016/j.jpowsour.2011.02.090