Acknowledgement
이 논문은 동신대학교 학술연구비에 의하여 연구되었음. 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1049387). 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체대학 협력기반 지역혁신 사업의 결과임(2021RIS-002).
References
- A. Manthiram, "A reflection on lithium-ion battery cathode chemistry," Nature Communication, Vol.11, No.1550, pp.1-9, 2020. https://doi.org/10.1038/s41467-020-15355-0
- L. Chen et al, "Estimation the internal resistance of lithiumion-battery using a multi-factor dynamic internal resistance model with an error compensation strategy," Energy Reports, Vol.7, pp.3050-3059, 2021.
- H. C. Lee, "Understanding and evaluating the performance and safety of lithium-ion batteries," The Magazine of the IEIE, Vol.34, Iss.12, pp.20-29, 2007.
- K. A. Severson et al., "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Vol.4, pp.383-391, 2019. https://doi.org/10.1038/s41560-019-0356-8
- J.-Y. Lim, D.-H. Kim, T.-W. Noh, and B.-K. Lee, "Remaining useful life prediction for litium-ion batteries using EMD-CNN-LSTM hybrid method," The Transactions of the Korean Institute of Power Electronics, Vol.27, No.1, pp.48- 55, 2022. https://doi.org/10.6113/TKPE.2022.27.1.48
- S.-R. Hong, M. Kang, H.-G. Jeong, J.-B. Baek, and J.-H. Kim, "State of health estimation for Lithium-Ion batteries using Long-termRecurrent convolutional network," The Transactions of the Korean Institute of Power Electronics, Vol.26, No.3, pp.183-191, 2021. https://doi.org/10.6113/TKPE.2021.26.3.183
- S. W. Kim, K.-Y. Oh, and S. Lee, "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Vol.315, pp.119011, 2022.
- K. Park, Y. Choi, W. J. Choi, H.-Y. Ryu, and H. Kim, "LSTM-Based battery remaining useful life prediction with Multi-Channel charging profiles," IEEE Access, Vol.8, pp.20786-20798, 2020. https://doi.org/10.1109/ACCESS.2020.2968939
- S,-J, Jung and J.-W. Hur, "Deep learning approaches to RUL prediction of Lithium-ion batteries," Journal of the Korean Society of Manufacturing Process Engineers, Vol.19, No.12, pp.21-27, 2020. https://doi.org/10.14775/ksmpe.2020.19.12.021
- B. Xu, D. Qian, Z. Wang, and Y. S. Meng, "Recent progress in cathode materials research for advanced lithium ion batteries," Materials Science and Engineering: R: Reports, Vol.73, Iss.56, pp.51-65, 2012. https://doi.org/10.1016/j.mser.2012.05.003
- J. Xiao, N. A. Chernova, and M. S. Whittingham, "Influence of manganese content on the performance of LiNi0.9-y MnyCo0.1O2 (0.45 ≤ y ≤ 0.60) as a cathode material for Li-Ion batteries," Chemistry of Materials, Vol.22, pp.1180- 1185, 2010. https://doi.org/10.1021/cm902627w
- S. Y. Kim, S.-H. Choi, E. J. Lee, and J.-S. Kim, "Synthesis and electrochemical performance of Ni-rich NCM cathode materials for Lithium-Ion batteries," Journal of the Korean Electrochemical Society, Vol.20, No.4, pp.67-74, 2017. https://doi.org/10.5229/JKES.2017.20.4.67
- B. Saha and K. Goebel, "Battery data set," NASA AMES Prognostics Data Repository, 2007.
- H. Zhang, X. Wang, J. Chen, C. Wang, and J. Li, "D2D-LSTM: LSTM-Based path prediction of content diffusion tree in Device-to-Device social networks," Proceedings of the AAAI Conference on Artificial Intelligence, Vol.34, No.1, pp.295-302, 2020.
- P. Zhao, A. Luo, Y. Liu, J. Xu, Z. Li, F. Zhuang, V. S. Sheng, and X. Zhou, "Where to go next: A spatio-temporal gated network for next POI recommendation," IEEE Transactions on Knowledge and Data Engineering, Vol.34, Iss.5, pp.2512-2524, 2022. https://doi.org/10.1109/TKDE.2020.3007194