DOI QR코드

DOI QR Code

Motion Vector Based Overlay Metrology Algorithm for Wafer Alignment

웨이퍼 정렬을 위한 움직임 벡터 기반의 오버레이 계측 알고리즘

  • 이현철 ((주)오로스테크놀로지) ;
  • 우호성 (한국방송통신대학교 이러닝학과)
  • Received : 2022.04.15
  • Accepted : 2022.07.13
  • Published : 2023.03.31

Abstract

Accurate overlay metrology is essential to achieve high yields of semiconductor products. Overlay metrology performance is greatly affected by overlay target design and measurement method. Therefore, in order to improve the performance of the overlay target, measurement methods applicable to various targets are required. In this study, we propose a new algorithm that can measure image-based overlay. The proposed measurement algorithm can estimate the sub-pixel position by using a motion vector. The motion vector may estimate the position of the sub-pixel unit by applying a quadratic equation model through polynomial expansion using pixels in the selected region. The measurement method using the motion vector can calculate the stacking error in all directions at once, unlike the existing correlation coefficient-based measurement method that calculates the stacking error on the X-axis and the Y-axis, respectively. Therefore, more accurate overlay measurement is possible by reflecting the relationship between the X-axis and the Y-axis. However, since the amount of computation is increased compared to the existing correlation coefficient-based algorithm, more computation time may be required. The purpose of this study is not to present an algorithm improved over the existing method, but to suggest a direction for a new measurement method. Through the experimental results, it was confirmed that measurement results similar to those of the existing method could be obtained.

반도체 제품의 높은 수율을 달성하기 위해서는 정확한 오버레이 계측이 필수적이다. 오버레이 계측 성능은 오버레이 타깃 설계와 측정 방법에 많은 영향을 받는다. 따라서 오버레이 타깃은 성능 개선을 위해 다양한 타깃에 적용할 수 있는 측정 방법들이 요구된다. 본 연구는 이미지 기반의 오버레이를 측정할 수 있는 새로운 알고리즘을 제안한다. 제안하는 측정 알고리즘은 움직임 벡터를 이용하는 방법으로 서브 픽셀 단위의 위치를 추정할 수 있다. 움직임 벡터는 선택된 영역의 픽셀들을 이용하여 다항식 전개를 통해 2차 방정식의 모델을 생성한다. 그 후 모델을 이용하여 서브픽셀 단위의 위치를 추정할 수 있다. 움직임 벡터를 활용한 측정방법은 X축, Y축의 적층 오류를 각각 계산하는 기존 상관계수 기반의 측정방법과는 달리 한 번에 모든 방향의 적층 오류를 계산할 수 있다. 따라서 X축과 Y축의 관계를 반영하여 보다 정확한 오버레이 측정이 가능하다. 하지만 기존 상관계수 기반의 알고리즘보다 계산량이 증가하기 때문에 더 많은 연산시간이 사용될 수 있다. 본 연구에서는 기존 방법보다 개선된 알고리즘을 제시하는 것이 아닌 새로운 측정 방법의 방향을 제안하는 것에 목적을 두고 있다. 실험 결과를 통해 기존 방법과 유사한 정밀도의 측정 결과를 얻을 수 있음을 확인하였다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1G1A1007678).

References

  1. M. S. Lee and Y. H. Shim, "Study on flow balance analysis for semiconductor photo inline equipment using simulation modeling approach," Korean Journal of Logistics, Vol.20, No.2, pp.63-74, 2012. https://doi.org/10.15735/KLS.2012.20.2.005
  2. KIPOST. (2019. Aug. 27). 'Semiconductor 9 major processes' measurement and inspection (MI) goes beyond the barriers of performance and throughput. [Internet], https://www.kipost.net/news/articleView.html?idxno=201664
  3. N. Sullivan and J. Shin, "Overlay metrology: The systematic, the random and the ugly," In: AIP Conference Proceedings, American Institute of Physics. pp.502-512, 1998.
  4. J. Bischoff, R., Brunner, J. J., Bauer, and U. Haak, "Light-diffraction-based overlay measurement," In: Metrology, Inspection, and Process Control for Microlithography XV. SPIE, pp.222-233, 2001.
  5. D. Van den Heuvel et al., "Moire effect-based overlay target design for OPO improvements," Proceedings SPIE 11611, Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV, 1161125, 22 Feb. 2021.
  6. C. W. Wong et al., "Self-referenced and self-calibrated MoireOVL target design and applications," Proceedings SPIE 11611, Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV, 1161122, 22 Feb. 2021.
  7. Y. Hagio et al., "Overlay improvement for semiconductor manufacturing using Moire effect," In: 2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE. pp.1-5, 2020.
  8. G. Farneback, "Polynomial expansion for orientation and motion estimation," PhD Thesis. Linkoping University Electronic Press., 2002.
  9. M. Adel et al., "Optimized overlay metrology marks: Theory and experiment," in IEEE Transactions on Semiconductor Manufacturing, Vol.17, No.2, pp.166-179, May 2004, doi: 10.1109/TSM.2004.826955.
  10. 장현진, 하호철, 이길수, 2017. WO2017200159A1. Overlay Mark, and overlay Measurement method and semiconductor device manufacturing method using same, accessed https://patents.google.com/patent/WO2017200159A1/en
  11. Overlay marks, methods of overlay mark design and methods of overlay measurements, KR2016,
  12. C. P. Ausschnitt et al., "Blossom overlay metrology implementation," In: Metrology, Inspection, and Process Control for Microlithography XXI. SPIE. pp.167-172, 2007. (Blossom)
  13. S. NakaJima, Y., Kanaya, A., Takahashi, K., Yoshida, and H. Mizutani, "Improving the measurement algorithm for alignment," In: Metrology, Inspection, and Process Control for Microlithography XV. SPIE. pp.572-582, 2001.
  14. R. Moddemeijer, "On the determination of the position of extrema of sampled correlators," in IEEE Transactions on Signal Processing, Vol.39, No.1, pp.216-219, Jan. 1991, doi: 10.1109/78.80788.
  15. D. Kandel, V. Levinski, N. Sapiens, G. Cohen, E. Amit, D. Klein, and I. Vakshtein, "Overlay accuracy fundamentals," Proceedings SPIE 8324, Metrology, Inspection, and Process Control for Microlithography XXVI, 832417 (5 Apr. 2012).
  16. G. Cohen, E. Amit, D. Klein, D. Kandel, and V. B. Levinski "Overlay quality metric," Proceedings SPIE 8324, Metrology, Inspection, and Process Control for Microlithography XXVI, 832424 (5 Apr. 2012).
  17. S. Zhou, Y. Fu, X. Tang, S. Hu, W. Chen, and Y. Yang, "Fourier-based analysis of moire fringe patterns of superposed gratings in alignment of nanolithography," Optics Express, Vol.16, No.11, pp.7869-7880, 2008. https://doi.org/10.1364/OE.16.007869
  18. J. Petit, P. Boher, T. Leroux, P. Barritault, J. Hazart, and P. Chaton, "Improved CD and overlay metrology using an optical Fourier transform instrument. In: Metrology, Inspection, and Process Control for Microlithography XIX. SPIE. pp.420-428, 2005.
  19. B. Ophir et al., "Machine learning for Tool Induced Shift (TIS) reduction: An HVM case study," Proceedings SPIE 11611, Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV, 116110E (22 Feb. 2021).
  20. Basha, S. Mahaboob and M. Kannan. "Literature survey on motion estimation techniques," International Journal of Engineering and Technology, Vol.7, pp.394, 2018.
  21. H. Lee, S. Lee, and O. Choi, "Improved method on image stitching based on optical flow algorithm," International Journal of Engineering Business Management, Vol.12, 1847979020980928, 2020.