참고문헌
- P. Agarwal, S. S. Dragomir, M. Jleli, and B. Samet, Advances in Mathematical Inequalities and Applications, Trends in Mathematics, Birkhauser, Singapore, 2018.
- P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators, Math. Methods Appl. Sci. 40 (2017), no. 1, 3882-3891. https://doi.org/10.1002/mma.4270
- P. Agarwal, M. Jleli, and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl. 2017 (2017), Article Number 55.
- M. A. Ali, N. Alp, H. Budak, and P. Agarwal, On some new trapezoidal inequalities for qκ2-quantum integrals via Green function, J. Anal. 30 (2022), 15-33. https://doi.org/10.1007/s41478-021-00323-8
- M. Alomari and M. Darus, On co-ordinated s-convex functions, Inter. Math. Forum 3 (2008), no. 40, 1977-1989.
- W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen, Pupl. Inst. Math. 23 (1978), 13-20.
- H. Budak, F. Hezenci, and H. Kara, On parametrized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral, Math. Methods Appl. Sci. 44 (2021), no. 17, 12522-12536. https://doi.org/10.1002/mma.7558
- H. Budak, F. Hezenci, and H. Kara, On generalized Ostrowski, Simpson and trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Difference Equ. 2021 (2021), 1-32. https://doi.org/10.1186/s13662-020-03162-2
- S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91-95. https://doi.org/10.1016/S0893-9659(98)00086-X
- S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math. 32 (1999), no. 4, 687-696. https://doi.org/10.1515/dema-1999-0403
- S. Erden, S. Iftikhar, P. Kumam, and M. U. Awan, Some Newton's like inequalities with applications, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 114 (2020), no. 4, 1-13. https://doi.org/10.1007/s13398-019-00732-2
- G. Farid and M. Usman, Ostrowski type k-fractional integral inequalities for MT-convex and h-convex functions, Nonlinear Funct. Anal. Appl. 22 (2017), 627-639.
- S. Gao and W. Shi, On new inequalities of Newton's type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math. 74 (2012), no. 1, 33-41.
- R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Springer Verlag, Wien, 1997.
- F. Hezenci, H. Budak, and H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equ. 2021 (2021), Articel Number 460.
- F. Hezenci, H. Budak, and P. Kosem, On New version of Newton's inequalities for Riemann-Liouville fractional integrals, To appear in Rocky Mountain J.
- H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111. https://doi.org/10.1007/BF01837981
- S. Iftikhar, P. Kumam, and S. Erden, Newton's-type integral inequalities via local fractional integrals, Fractals 28 (2020), no. 3, 2050037.
- S. Iftikhar, S. Erden, P. Kumam, and M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Difference Equ. 2020 (2020), no. 1, 1-14. https://doi.org/10.1186/s13662-019-2438-0
- ˙I. ˙I,scan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput. 238 (2014), 237-244.
- M. A. Khan, A. Iqbal, M. Suleman, and Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl. 2018 (2018), 1-15. https://doi.org/10.1186/s13660-017-1594-6
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
- U. S. Kirmaci, M. K. Bakula, M. Klaricic, M. E. Ozdemir, and J. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26-35.
- M. A. Noor, K. I. Noor, and S. Iftikhar, Some Newton's type inequalities for harmonic convex functions, J. Adv. Math. Stud. 9 (2016), no. 1, 7-16. https://doi.org/10.2298/FIL1609435N
- M. A. Noor, K. I. Noor, and S. Iftikhar, Newton inequalities for p-harmonic convex functions, Honam Math. J. 40 (2018), no. 2, 239-250.
- J. Park, On Some Integral Inequalities for Twice Differentiable Quasi-Convex and Convex Functions via Fractional Integrals, Appl. Math. Sci. 9 (2015), no. 62, 3057-3069. https://doi.org/10.12988/ams.2015.53248
- J. E. Pecaric F. Proschan, abd Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
- C. Peng, C. Zhou, and T. S. Du Riemann-Liouville fractional Simpson's inequalities through generalized (m, h1, h2)-preinvexity, Ital. J. Pure Appl. Math. 38 (2017), 345-367.
- M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Ba,sak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. Dyn. Syst. 57 (2013), 2403-2407. https://doi.org/10.1016/j.mcm.2011.12.048
- M. Z. Sarikaya and F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova Math. 47 (2020), 193-213.
- T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, and H. Budak, Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract. 6 (2022), no. 3, 175.
- M. Tunc, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27 (2013), 559-565. https://doi.org/10.2298/FIL1304559T
- X. You, F. Hezenci, H. Budak, and H. Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Mathematics 7 (2021), no. 3, 3959-3971. https://doi.org/10.3934/math.2022218
- XX. You, M. A. Ali, H. Budak, P. Agarwal, and Y-M. Chu, Extensions of Hermite-Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequal Appl, 2021 (2021), Articel Number 102.
- D. Zhao, M. A. Ali, A. Kashuri, H. Budak, and M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl. 2020 (2020), 1-38. https://doi.org/10.1186/s13660-019-2265-6