과제정보
The authors are thankful to the learned reviewer for his valuable comments.
참고문헌
- M. Abbas and G. Jungck, Common fixed point results for non-commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 416-420. https://doi.org/10.1016/j.jmaa.2007.09.070
- T. Abdeljawad, R. P. Agarwal, E. Karapinar, and P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric Space, Symmetry 11 (2019), no. 5, 686.
- M. Ahmadullah, J. Ali, and M. Imdad, Unified relation-theoretic metrical fixed point theorems under an implicit contractive condition with an application, Fixed Point Theory Appl. (2016), no. 1, 1-15.
- J. Ali and M. Imdad, An implicit function implies several contraction conditions, Sarajevo J. Math. 4 (2008), no. 17, 269-285. https://doi.org/10.5644/SJM.04.2.12
- A. H. Ansari, V. Gupta, and N. Mani, C-class functions on some couple fixed point theorem in partially ordered S-metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), no. 2, 1694-1708. https://doi.org/10.31801/cfsuasmas.425424
- H. Aydi, A. Felhi, and S. Sahmim, Common fixed points via implicit contractions on b-metric-like spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1524-1537. https://doi.org/10.22436/jnsa.010.04.20
- H. Aydi, M. F. Bota, E. Karapinar, and S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. (1) (2012), 1-8.
- H. Aydi, M. F. Bota, E. Karapinar, and S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory 13 (2012), no. 2, 337-346. https://doi.org/10.1186/1687-1812-2012-44
- D. Baleanu, S. Rezapour, and H. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 371 (2013), no.1990, 1-7. https://doi.org/10.1098/rsta.2012.0144
- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), no. 1, 133-181. https://doi.org/10.4064/fm-3-1-133-181
- V. Berinde, Approximating fixed points of implicit almost contractions, Hacet J Math Stat. 40 (2012), no. 1, 93-102. https://doi.org/10.1186/1687-1812-2012-105
- V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. (2012), no. 1, 105.
- P. Borisut, P. Kumam, V. Gupta, and N. Mani, Generalized (ψ, α, β)-Weak Contractions for Initial Value Problems, Mathematics 7 (2019), no. 3, 266.
- L. Budhia, H. Aydi, A. H. Ansari, and D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.: Model. Control 25 (2020), no .4, 580-597.
- S. Chaipornjareansri, Fixed point theorems for generalised weakly contractive mappings in S-metric spaces, Thai J. Math. (2018), 50-62.
- C. Chifu, and G. Petrusel, Fixed point results for multi-valued Hardy-Rogers contractions in b-metric spaces, Filomat 31 (2017), no. 8, 2499-2507. https://doi.org/10.2298/FIL1708499C
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1993), 5-11.
- R. E. Edwards, Functional Analysis Theory and Application, Courier Corporation, 2012.
- K. S. Eke, B. Davvaz, and J. G. Oghonyon, Relation-theoretic common fixed point theorems for a pair of implicit contractive maps in metric spaces, Commun Math Appl. 10 (2019), no. 1, 159-168.
- M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo 22 (1906), no. 1, 1-72. https://doi.org/10.1007/BF03018603
- P. Gautam and S. Verma, Fixed point via implicit contraction mapping in Quasi-partial b-metric spaces, The Journal of Analysis (2021), 1-13.
- P. Gautam, L. M. Sanchez Ruiz, and S. Verma, Fixed point of interpolative Rus-Reich-Ciric contraction mapping on rectangular quasi-partial b-metric space, Symmetry 13 (2020), no. 1, 1-32. https://doi.org/10.3390/sym13010001
- P. Gautam, L. M. Sanchez Ruiz, and S. Verma, Common fixed point results on generalised weak compatible mapping in quasi-partial b-metric Space, J. Math 2021 (2021), Article ID 5526801.
- P. Gautam, V. N. Mishra, R. Ali, and S. Verma, Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space, AIMS Mathematics 6 (2021), no. 2, 1727-1742. https://doi.org/10.3934/Math.2021103
- D. Gopal, P. Kumam, and M. eds. Abbas, Background and recent developments of metric fixed point theory, CRC Press, 2017.
- A. Gupta, and P. Gautam, Quasi-partial b-metric spaces and some related fixed point theorems, Fixed Point Theory Appl. 1 (2015), 1-12.
- A. Gupta and P. Gautam, Topological structure of quasi-partial b-metric spaces, Int. J. Pure Math. Sci. 17 (2016), 8-18. https://doi.org/10.18052/www.scipress.com/IJPMS.17.8
- A. Gupta and P. Gautam, Some coupled fixed point theorems on quasi-partial b-metric spaces, Int. J. Math. Anal. 9 (2015), no. 6, 293-306. https://doi.org/10.12988/ijma.2015.412388
- V. Gupta, W. Shatanawi, and N. Mani, Fixed point theorems for (ψ, α, β)-Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations, J. Fixed Point Theory Appl. 19 (2017), no. 2, 1251-1267. https://doi.org/10.1007/s11784-016-0303-2
- M. Imdad, S. Kumar, and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Radovi Mathematicki 11 (2002), 135-143.
- M. Imdad, R. Gubran, and M. Ahmadullah Using an implicit function to prove common fixed point theorems, prepreint (2016); arXiv:1605.05743.
- F. Jarad, T. Abdeljawad, and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals 117 (2018), 16-20. https://doi.org/10.1016/j.chaos.2018.10.006
- G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), no. 4, 261-263. https://doi.org/10.1080/00029890.1976.11994093
- G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), no. 4, 771-779. https://doi.org/10.1155/S0161171286000935
- H. Kaneko and S. Sessa, Fixed point theorem for compatible multi-valued and single-valued mappings, Internat. J. Math. and Math. Sci. 12 (1989), 257-262. https://doi.org/10.1155/S0161171289000293
- T. Kanwal, A. Hussain, H. Baghani, and M. de la Sen, New fixed point theorems in orthogonal F-metric spaces with application to fractional differential equation, Symmetry 12 (2020), no. 5, 832.
- E. Karapinar, I. Erhan, and A. Ozurk, Fixed point theorems on quasi-partial metric spaces, Math Comput. Model. 57 (2013), 2442-2448. https://doi.org/10.1016/j.mcm.2012.06.036
- E. Karapinar, T. Abdeljawad, and F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Difference Equ. 1 (2019), 1-25.
- E. Karapinar, A. Fulga, and A. Petrusel, On Istratescu type contractions in b-metric spaces, Mathematics 8 (2020), no.3, 388.
- J. K. Kim, S. Sedghi, A. Gholidahneh, and M. Rezaee, Fixed point theorems in S-metric spaces, East Asian, Math. J. 32 (2016), no. 5, 677-684. https://doi.org/10.7858/eamj.2016.047
- W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Springer, 2014.
- S. G. Matthews, Partial-metric topology, Ann. N. Y. Acad. Sci. 728 (1994), 183-197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
- N. Mlaiki, A. Mukheimer, Y. Rohen, N. Souayah, and T. Abdeljawad, Fixed point theorem for α-ϕ contractive mappings in Sb-metric Space, J. Math. Anal. Appl. 8 (2017), no. 5, 40-46.
- S. Nizar, A fixed point in partial Sb-metric spaces, Analele Universitatii Ovidius Constanta-Seria Matematica 24 (2016), no. 3, 351-362. https://doi.org/10.1515/auom-2016-0062
- S. Nizar and M. Nabil, A fixed point theorem in Sb-metric spaces, J. Math. Computer Sci. 16 (2016), 131-139. https://doi.org/10.22436/jmcs.016.02.01
- N. Y. Ozgur and N. Tas, New contractive conditions of integral type on complete Smetric spaces, Math. Sci. 11 (2017), no. 3, 231-240.. https://doi.org/10.1007/s40096-017-0226-0
- H. K. Pathak, An introduction to nonlinear analysis and fixed point theory, Springer, 2018.
- H. K. Pathak, Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Math. Hungarica. 67 (1995), no. 1-2, 69-78. https://doi.org/10.1007/BF01874520
- H. K. Pathak, M. S. Khan, and R. Tiwari, A common fixed point theorem and its application to nonlinear integral equations, Comput. Math. Appl. 53 (2007), no. 6, 961-971. https://doi.org/10.1016/j.camwa.2006.08.046
- V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32 (1999), no. 1, 157-164. https://doi.org/10.1515/dema-1999-0117
- V. Popa, Fixed points for non-surjective expansion mappings satisfying an implicit relation, Buletinul s'tiint'ific Al Universitatii Baia Mare, Seria B, Fascicola Matematica-Informatica 18 (2002), 105-108.
- V. Popa, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turkish J. Math. 25 (2001), 465-474.
- V. Popa, Fixed point theorems for implicit contractive mappings, Studii si Cercetari Stiintifice Series: Mathematics, Universitatea din Bacau 7 (1997), 127-133.
- V. Popa, Common fixed points of mappings satisfying implicit relations in partial-metric spaces, J. Nonlinear Sci. Appl. 6 (2013), no. 3, 152-161. https://doi.org/10.22436/jnsa.006.03.01
- V. Popa and A. Patriciu, Fixed point for compatible mappings in S-metric spaces, Scientific Studies and Research Series Mathematics and Informatics 28 (2018), no. 2, 63-78.
- J. R. Roshan, V. Parvaneh, and Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl. 7 (2014), 229-245. https://doi.org/10.22436/jnsa.007.04.01
- S. Sedghi, N. Shobe, and A. Aliouche, A generalisation of fixed point theorem in S-metric spaces, Matematicki Vesnik 64 (2012), 258-266.
- S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (1982), no. 46, 149-153.
- K. A. Singh and M. Singh, Common fixed point of four maps in S-metric spaces, Math. Sci. 12 (2018), no. 2, 137-143. https://doi.org/10.1007/s40096-018-0252-6
- K. A. Singh and M. Singh, Fixed point theorem for generalised β-ϕ Geraghty contraction type maps in S-metric Space, Electron J Math Anal Appl. 8 (2020), no. 1, 273-283. https://doi.org/10.21608/ejmaa.2020.312824
- W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl Math. 2011, 14 pages, DOI:10.1155/2011/637958.
- C. Vetro and F. Vetro, Common fixed points of mappings satisfying implicit relations in partial metric spaces, J. Nonlinear Sci. Appl. 6 (2013), no. 3, 152-161. https://doi.org/10.22436/jnsa.006.03.01
- F. Yan, Y. Su, and Q. Feng, A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2012 (2012), Article ID 152.
- H. Zahed, H. A. Fouad, S. Hristova, and J. Ahmad, Generalized Fixed Point Results with Application to Nonlinear Fractional Differential Equations, Mathematics 8 (2020), no. 7, 1168.
- U. Zolzer, DAFX: Digital Audio Effects, Ed. 21 (2020), no. 2, 48-49.