DOI QR코드

DOI QR Code

GENERALISED COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE MAPPINGS VIA IMPLICIT CONTRACTIVE RELATION IN QUASI-PARTIAL Sb-METRIC SPACE WITH SOME APPLICATIONS

  • Lucas Wangwe (Department of Mathematics, College of Natural and Applied Sciences, University of Dar es Salaam) ;
  • Santosh Kumar (Department of Mathematics, College of Natural and Applied Sciences, University of Dar es Salaam)
  • 투고 : 2021.08.02
  • 심사 : 2022.09.27
  • 발행 : 2023.03.25

초록

In the present paper, we prove common fixed point theorems for a pair of weakly compatible mappings under implicit contractive relation in quasi-partial Sb-metric spaces. We also provide an illustrative example to support our results. Furthermore, we will use the results obtained for application to two boundary value problems for the second-order differential equation. Also, we prove a common solution for the nonlinear fractional differential equation.

키워드

과제정보

The authors are thankful to the learned reviewer for his valuable comments.

참고문헌

  1. M. Abbas and G. Jungck, Common fixed point results for non-commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 416-420.  https://doi.org/10.1016/j.jmaa.2007.09.070
  2. T. Abdeljawad, R. P. Agarwal, E. Karapinar, and P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric Space, Symmetry 11 (2019), no. 5, 686. 
  3. M. Ahmadullah, J. Ali, and M. Imdad, Unified relation-theoretic metrical fixed point theorems under an implicit contractive condition with an application, Fixed Point Theory Appl. (2016), no. 1, 1-15. 
  4. J. Ali and M. Imdad, An implicit function implies several contraction conditions, Sarajevo J. Math. 4 (2008), no. 17, 269-285.  https://doi.org/10.5644/SJM.04.2.12
  5. A. H. Ansari, V. Gupta, and N. Mani, C-class functions on some couple fixed point theorem in partially ordered S-metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), no. 2, 1694-1708.  https://doi.org/10.31801/cfsuasmas.425424
  6. H. Aydi, A. Felhi, and S. Sahmim, Common fixed points via implicit contractions on b-metric-like spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1524-1537.  https://doi.org/10.22436/jnsa.010.04.20
  7. H. Aydi, M. F. Bota, E. Karapinar, and S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. (1) (2012), 1-8. 
  8. H. Aydi, M. F. Bota, E. Karapinar, and S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory 13 (2012), no. 2, 337-346.  https://doi.org/10.1186/1687-1812-2012-44
  9. D. Baleanu, S. Rezapour, and H. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 371 (2013), no.1990, 1-7.  https://doi.org/10.1098/rsta.2012.0144
  10. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), no. 1, 133-181.  https://doi.org/10.4064/fm-3-1-133-181
  11. V. Berinde, Approximating fixed points of implicit almost contractions, Hacet J Math Stat. 40 (2012), no. 1, 93-102.  https://doi.org/10.1186/1687-1812-2012-105
  12. V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. (2012), no. 1, 105. 
  13. P. Borisut, P. Kumam, V. Gupta, and N. Mani, Generalized (ψ, α, β)-Weak Contractions for Initial Value Problems, Mathematics 7 (2019), no. 3, 266. 
  14. L. Budhia, H. Aydi, A. H. Ansari, and D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.: Model. Control 25 (2020), no .4, 580-597. 
  15. S. Chaipornjareansri, Fixed point theorems for generalised weakly contractive mappings in S-metric spaces, Thai J. Math. (2018), 50-62. 
  16. C. Chifu, and G. Petrusel, Fixed point results for multi-valued Hardy-Rogers contractions in b-metric spaces, Filomat 31 (2017), no. 8, 2499-2507.  https://doi.org/10.2298/FIL1708499C
  17. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1993), 5-11. 
  18. R. E. Edwards, Functional Analysis Theory and Application, Courier Corporation, 2012. 
  19. K. S. Eke, B. Davvaz, and J. G. Oghonyon, Relation-theoretic common fixed point theorems for a pair of implicit contractive maps in metric spaces, Commun Math Appl. 10 (2019), no. 1, 159-168. 
  20. M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo 22 (1906), no. 1, 1-72.  https://doi.org/10.1007/BF03018603
  21. P. Gautam and S. Verma, Fixed point via implicit contraction mapping in Quasi-partial b-metric spaces, The Journal of Analysis (2021), 1-13. 
  22. P. Gautam, L. M. Sanchez Ruiz, and S. Verma, Fixed point of interpolative Rus-Reich-Ciric contraction mapping on rectangular quasi-partial b-metric space, Symmetry 13 (2020), no. 1, 1-32.  https://doi.org/10.3390/sym13010001
  23. P. Gautam, L. M. Sanchez Ruiz, and S. Verma, Common fixed point results on generalised weak compatible mapping in quasi-partial b-metric Space, J. Math 2021 (2021), Article ID 5526801. 
  24. P. Gautam, V. N. Mishra, R. Ali, and S. Verma, Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space, AIMS Mathematics 6 (2021), no. 2, 1727-1742.  https://doi.org/10.3934/Math.2021103
  25. D. Gopal, P. Kumam, and M. eds. Abbas, Background and recent developments of metric fixed point theory, CRC Press, 2017. 
  26. A. Gupta, and P. Gautam, Quasi-partial b-metric spaces and some related fixed point theorems, Fixed Point Theory Appl. 1 (2015), 1-12. 
  27. A. Gupta and P. Gautam, Topological structure of quasi-partial b-metric spaces, Int. J. Pure Math. Sci. 17 (2016), 8-18.  https://doi.org/10.18052/www.scipress.com/IJPMS.17.8
  28. A. Gupta and P. Gautam, Some coupled fixed point theorems on quasi-partial b-metric spaces, Int. J. Math. Anal. 9 (2015), no. 6, 293-306.  https://doi.org/10.12988/ijma.2015.412388
  29. V. Gupta, W. Shatanawi, and N. Mani, Fixed point theorems for (ψ, α, β)-Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations, J. Fixed Point Theory Appl. 19 (2017), no. 2, 1251-1267.  https://doi.org/10.1007/s11784-016-0303-2
  30. M. Imdad, S. Kumar, and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Radovi Mathematicki 11 (2002), 135-143. 
  31. M. Imdad, R. Gubran, and M. Ahmadullah Using an implicit function to prove common fixed point theorems, prepreint (2016); arXiv:1605.05743. 
  32. F. Jarad, T. Abdeljawad, and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals 117 (2018), 16-20.  https://doi.org/10.1016/j.chaos.2018.10.006
  33. G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), no. 4, 261-263.  https://doi.org/10.1080/00029890.1976.11994093
  34. G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), no. 4, 771-779.  https://doi.org/10.1155/S0161171286000935
  35. H. Kaneko and S. Sessa, Fixed point theorem for compatible multi-valued and single-valued mappings, Internat. J. Math. and Math. Sci. 12 (1989), 257-262.  https://doi.org/10.1155/S0161171289000293
  36. T. Kanwal, A. Hussain, H. Baghani, and M. de la Sen, New fixed point theorems in orthogonal F-metric spaces with application to fractional differential equation, Symmetry 12 (2020), no. 5, 832. 
  37. E. Karapinar, I. Erhan, and A. Ozurk, Fixed point theorems on quasi-partial metric spaces, Math Comput. Model. 57 (2013), 2442-2448.  https://doi.org/10.1016/j.mcm.2012.06.036
  38. E. Karapinar, T. Abdeljawad, and F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Difference Equ. 1 (2019), 1-25. 
  39. E. Karapinar, A. Fulga, and A. Petrusel, On Istratescu type contractions in b-metric spaces, Mathematics 8 (2020), no.3, 388. 
  40. J. K. Kim, S. Sedghi, A. Gholidahneh, and M. Rezaee, Fixed point theorems in S-metric spaces, East Asian, Math. J. 32 (2016), no. 5, 677-684.  https://doi.org/10.7858/eamj.2016.047
  41. W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Springer, 2014. 
  42. S. G. Matthews, Partial-metric topology, Ann. N. Y. Acad. Sci. 728 (1994), 183-197.  https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
  43. N. Mlaiki, A. Mukheimer, Y. Rohen, N. Souayah, and T. Abdeljawad, Fixed point theorem for α-ϕ contractive mappings in Sb-metric Space, J. Math. Anal. Appl. 8 (2017), no. 5, 40-46. 
  44. S. Nizar, A fixed point in partial Sb-metric spaces, Analele Universitatii Ovidius Constanta-Seria Matematica 24 (2016), no. 3, 351-362.  https://doi.org/10.1515/auom-2016-0062
  45. S. Nizar and M. Nabil, A fixed point theorem in Sb-metric spaces, J. Math. Computer Sci. 16 (2016), 131-139.  https://doi.org/10.22436/jmcs.016.02.01
  46. N. Y. Ozgur and N. Tas, New contractive conditions of integral type on complete Smetric spaces, Math. Sci. 11 (2017), no. 3, 231-240..  https://doi.org/10.1007/s40096-017-0226-0
  47. H. K. Pathak, An introduction to nonlinear analysis and fixed point theory, Springer, 2018. 
  48. H. K. Pathak, Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Math. Hungarica. 67 (1995), no. 1-2, 69-78.  https://doi.org/10.1007/BF01874520
  49. H. K. Pathak, M. S. Khan, and R. Tiwari, A common fixed point theorem and its application to nonlinear integral equations, Comput. Math. Appl. 53 (2007), no. 6, 961-971.  https://doi.org/10.1016/j.camwa.2006.08.046
  50. V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32 (1999), no. 1, 157-164.  https://doi.org/10.1515/dema-1999-0117
  51. V. Popa, Fixed points for non-surjective expansion mappings satisfying an implicit relation, Buletinul s'tiint'ific Al Universitatii Baia Mare, Seria B, Fascicola Matematica-Informatica 18 (2002), 105-108. 
  52. V. Popa, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turkish J. Math. 25 (2001), 465-474. 
  53. V. Popa, Fixed point theorems for implicit contractive mappings, Studii si Cercetari Stiintifice Series: Mathematics, Universitatea din Bacau 7 (1997), 127-133. 
  54. V. Popa, Common fixed points of mappings satisfying implicit relations in partial-metric spaces, J. Nonlinear Sci. Appl. 6 (2013), no. 3, 152-161.  https://doi.org/10.22436/jnsa.006.03.01
  55. V. Popa and A. Patriciu, Fixed point for compatible mappings in S-metric spaces, Scientific Studies and Research Series Mathematics and Informatics 28 (2018), no. 2, 63-78. 
  56. J. R. Roshan, V. Parvaneh, and Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl. 7 (2014), 229-245.  https://doi.org/10.22436/jnsa.007.04.01
  57. S. Sedghi, N. Shobe, and A. Aliouche, A generalisation of fixed point theorem in S-metric spaces, Matematicki Vesnik 64 (2012), 258-266. 
  58. S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (1982), no. 46, 149-153. 
  59. K. A. Singh and M. Singh, Common fixed point of four maps in S-metric spaces, Math. Sci. 12 (2018), no. 2, 137-143.  https://doi.org/10.1007/s40096-018-0252-6
  60. K. A. Singh and M. Singh, Fixed point theorem for generalised β-ϕ Geraghty contraction type maps in S-metric Space, Electron J Math Anal Appl. 8 (2020), no. 1, 273-283.  https://doi.org/10.21608/ejmaa.2020.312824
  61. W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl Math. 2011, 14 pages, DOI:10.1155/2011/637958. 
  62. C. Vetro and F. Vetro, Common fixed points of mappings satisfying implicit relations in partial metric spaces, J. Nonlinear Sci. Appl. 6 (2013), no. 3, 152-161.  https://doi.org/10.22436/jnsa.006.03.01
  63. F. Yan, Y. Su, and Q. Feng, A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2012 (2012), Article ID 152. 
  64. H. Zahed, H. A. Fouad, S. Hristova, and J. Ahmad, Generalized Fixed Point Results with Application to Nonlinear Fractional Differential Equations, Mathematics 8 (2020), no. 7, 1168. 
  65. U. Zolzer, DAFX: Digital Audio Effects, Ed. 21 (2020), no. 2, 48-49.