References
- Ammala, C., Drury, W. J., 3rd, Knerr, L., Ahlstedt, I., Stillemark-Billton, P., Wennberg-Huldt, C., Andersson, E. M., Valeur, E., Jansson-Lofmark, R., Janzen, D., Sundstrom, L., Meuller, J., Claesson, J., Andersson, P., Johansson, C., Lee, R. G., Prakash, T. P., Seth, P. P., Monia, B. P. and Andersson, S. (2018) Targeted delivery of antisense oligonucleotides to pancreatic β-cells. Sci. Adv. 4, eaat3386.
- Anderson, B. A., Freestone, G. C., Low, A., De-Hoyos, C. L., Iii, W. J. D., Ostergaard, M. E., Migawa, M. T., Fazio, M., Wan, W. B., Berdeja, A., Scandalis, E., Burel, S. A., Vickers, T. A., Crooke, S. T., Swayze, E. E., Liang, X. and Seth, P. P. (2021) Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Res. 49, 9026-9041. https://doi.org/10.1093/nar/gkab718
- Baker, B. F., Lot, S. S., Kringel, J., Cheng-Flournoy, S., Villiet, P., Sasmor, H. M., Siwkowski, A. M., Chappell, L. L. and Morrow, J. R. (1999) Oligonucleotide-europium complex conjugate designed to cleave the 5' cap structure of the ICAM-1 transcript potentiates antisense activity in cells. Nucleic Acids Res. 27, 1547-1551. https://doi.org/10.1093/nar/27.6.1547
- Baker, Y. R., Thorpe, C., Chen, J., Poller, L. M., Cox, L., Kumar, P., Lim, W. F., Lie, L., McClorey, G., Epple, S., Singleton, D., McDonough, M. A., Hardwick, J. S., Christensen, K. E., Wood, M. J. A., Hall, J. P., El-Sagheer, A. H. and Brown, T. (2022) An LNA-amide modification that enhances the cell uptake and activity of phosphorothioate exon-skipping oligonucleotides. Nat. Commun. 13, 4036.
- Bhingardeve, P., Madhanagopal, B. R., Naick, H., Jain, P., Manoharan, M. and Ganesh, K. (2020) Receptor-specific delivery of peptide nucleic acids conjugated to three sequentially linked N-acetyl galactosamine moieties into hepatocytes. J. Org. Chem. 85, 8812-8824. https://doi.org/10.1021/acs.joc.0c00601
- Burdick, A. D., Sciabola, S., Mantena, S. R., Hollingshead, B. D., Stanton, R., Warneke, J. A., Zeng, M., Martsen, E., Medvedev, A., Makarov, S. S., Reed, L. A., Davis, J. W., 2nd and Whiteley, L. O. (2014) Sequence motifs associated with hepatotoxicity of locked nucleic acid--modified antisense oligonucleotides. Nucleic Acids Res. 42, 4882-4891. https://doi.org/10.1093/nar/gku142
- Burel, S. A., Hart, C. E., Cauntay, P., Hsiao, J., Machemer, T., Katz, M., Watt, A., Bui, H. H., Younis, H., Sabripour, M., Freier, S. M., Hung, G., Dan, A., Prakash, T. P., Seth, P. P., Swayze, E. E., Bennett, C. F., Crooke, S. T. and Henry, S. P. (2016) Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res. 44, 2093-2109. https://doi.org/10.1093/nar/gkv1210
- Burel, S. A., Machemer, T., Ragone, F. L., Kato, H., Cauntay, P., Greenlee, S., Salim, A., Gaarde, W. A., Hung, G., Peralta, R., Freier, S. M. and Henry, S. P. (2012) Unique O-methoxyethyl ribose-DNA chimeric oligonucleotide induces an atypical melanoma differentiation-associated gene 5-dependent induction of type I interferon response. J. Pharmacol. Exp. Ther. 342, 150-162. https://doi.org/10.1124/jpet.112.193789
- Calvo, S. E., Pagliarini, D. J. and Mootha, V. K. (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. U. S. A. 106, 7507-7512. https://doi.org/10.1073/pnas.0810916106
- Cerritelli, S. M. and Crouch, R. J. (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276, 1494-1505. https://doi.org/10.1111/j.1742-4658.2009.06908.x
- Chelobanov, B. P., Burakova, E. A., Prokhorova, D. V., Fokina, A. A. and Stetsenko, D. A. (2017) New oligodeoxynucleotide derivatives containing N-(methanesulfonyl)-phosphoramidate (mesyl phosphoramidate) internucleotide group. Russ. J. Bioorg. Chem. 43, 664-668. https://doi.org/10.1134/S1068162017060024
- Clemens, P. R., Rao, V. K., Connolly, A. M., Harper, A. D., Mah, J. K., Smith, E. C., McDonald, C. M., Zaidman, C. M., Morgenroth, L. P., Osaki, H., Satou, Y., Yamashita, T. and Hoffman, E. P. (2020) Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 77, 982-991. https://doi.org/10.1001/jamaneurol.2020.1264
- Crooke, S. T., Baker, B. F., Crooke, R. M. and Liang, X. H. (2021) Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427-453.
- Crooke, S. T., Baker, B. F., Kwoh, T. J., Cheng, W., Schulz, D. J., Xia, S., Salgado, N., Bui, H. H., Hart, C. E., Burel, S. A., Younis, H. S., Geary, R. S., Henry, S. P. and Bhanot, S. (2016) Integrated safety assessment of 2'-O-methoxyethyl chimeric antisense oligonucleotides in nonhuman primates and healthy human volunteers. Mol. Ther. 24, 1771-1782. https://doi.org/10.1038/mt.2016.136
- Crooke, S. T., Baker, B. F., Pham, N. C., Hughes, S. G., Kwoh, T. J., Cai, D., Tsimikas, S., Geary, R. S. and Bhanot, S. (2018) The effects of 2'-O-methoxyethyl oligonucleotides on renal function in humans. Nucleic Acid Ther. 28, 10-22. https://doi.org/10.1089/nat.2017.0693
- Crooke, S. T., Baker, B. F., Witztum, J. L., Kwoh, T. J., Pham, N. C., Salgado, N., McEvoy, B. W., Cheng, W., Hughes, S. G., Bhanot, S. and Geary, R. S. (2017a) The effects of 2'-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. Nucleic Acid Ther. 27, 121-129. https://doi.org/10.1089/nat.2016.0650
- Crooke, S. T., Seth, P. P., Vickers, T. A. and Liang, X. H. (2020a) The interaction of phosphorothioate-containing RNA targeted drugs with proteins is a critical determinant of the therapeutic effects of these agents. J. Am. Chem. Soc. 142, 14754-14771. https://doi.org/10.1021/jacs.0c04928
- Crooke, S. T., Vickers, T. A. and Liang, X. H. (2020b) Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 48, 5235-5253. https://doi.org/10.1093/nar/gkaa299
- Crooke, S. T., Wang, S., Vickers, T. A., Shen, W. and Liang, X. H. (2017b) Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol. 35, 230-237. https://doi.org/10.1038/nbt.3779
- De Mesmaeker, A., Waldner, A., Lebreton, J., Hoffmann, P., Fritsch, V., Wolf, R. M. and Freier, S. M. (1994) Amides as a new type of backbone modification in oligonucleotides. Angew. Chem. Int. Ed. Engl. 33, 226-229. https://doi.org/10.1002/anie.199402261
- De Santi, C., Fernandez Fernandez, E., Gaul, R., Vencken, S., Glasgow, A., Oglesby, I. K., Hurley, K., Hawkins, F., Mitash, N., Mu, F., Raoof, R., Henshall, D. C., Cutrona, M. B., Simpson, J. C., Harvey, B. J., Linnane, B., McNally, P., Cryan, S. A., MacLoughlin, R., Swiatecka-Urban, A. and Greene, C. M. (2020) Precise targeting of miRNA sites restores CFTR activity in CF bronchial epithelial cells. Mol. Ther. 28, 1190-1199. https://doi.org/10.1016/j.ymthe.2020.02.001
- Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Rozowsky, J., Roder, M., Kokocinski, F., Abdelhamid, R. F., Alioto, T., Antoshechkin, I., Baer, M. T., Bar, N. S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Dumais, J., Duttagupta, R., Falconnet, E., Fastuca, M., Fejes-Toth, K., Ferreira, P., Foissac, S., Fullwood, M. J., Gao, H., Gonzalez, D., Gordon, A., Gunawardena, H., Howald, C., Jha, S., Johnson, R., Kapranov, P., King, B., Kingswood, C., Luo, O. J., Park, E., Persaud, K., Preall, J. B., Ribeca, P., Risk, B., Robyr, D., Sammeth, M., Schaffer, L., See, L.-H., Shahab, A., Skancke, J., Suzuki, A. M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang, H., Wrobel, J., Yu, Y., Ruan, X., Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T., Reymond, A., Antonarakis, S. E., Hannon, G., Giddings, M. C., Ruan, Y., Wold, B., Carninci, P., Guigo, R. and Gingeras, T. R. (2012) Landscape of transcription in human cells. Nature 489, 101-108.
- Doherty, G. J. and McMahon, H. T. (2009) Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857-902. https://doi.org/10.1146/annurev.biochem.78.081307.110540
- Dowdy, S. F. (2017) Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222-229. https://doi.org/10.1038/nbt.3802
- Echevarria, L., Aupy, P. and Goyenvalle, A. (2018) Exon-skipping advances for Duchenne muscular dystrophy. Hum. Mol. Genet. 27, R163-R172. https://doi.org/10.1093/hmg/ddy171
- Eckstein, F. (2000) Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 10, 117-121. https://doi.org/10.1089/oli.1.2000.10.117
- Epple, S., Thorpe, C., Baker, Y. R., El-Sagheer, A. H. and Brown, T. (2020) Consecutive 5'- and 3'-amide linkages stabilise antisense oligonucleotides and elicit an efficient RNase H response. Chem. Commun. 56, 5496-5499. https://doi.org/10.1039/D0CC00444H
- Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. https://doi.org/10.1038/35888
- Freier, S. M. and Altmann, K. H. (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 25, 4429-4443. https://doi.org/10.1093/nar/25.22.4429
- Garber, K. (2016) Big win possible for Ionis/Biogen antisense drug in muscular atrophy. Nat. Biotechnol. 34, 1002-1003. https://doi.org/10.1038/nbt1016-1002
- Gaus, H., Miller, C. M., Seth, P. P. and Harris, E. N. (2018) Structural determinants for the interactions of chemically modified nucleic acids with the stabilin-2 clearance receptor. Biochemistry 57, 2061-2064. https://doi.org/10.1021/acs.biochem.8b00126
- Gaus, H. J., Gupta, R., Chappell, A. E., Ostergaard, M. E., Swayze, E. E. and Seth, P. P. (2019) Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res. 47, 1110-1122. https://doi.org/10.1093/nar/gky1260
- Geary, R. S., Baker, B. F. and Crooke, S. T. (2015) Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (kynamro(®)): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin. Pharmacokinet. 54, 133-146. https://doi.org/10.1007/s40262-014-0224-4
- Geary, R. S., Leeds, J. M., Fitchett, J., Burckin, T., Truong, L., Spain-hour, C., Creek, M. and Levin, A. A. (1997) Pharmacokinetics and metabolism in mice of a phosphorothioate oligonucleotide antisense inhibitor of C-raf-1 kinase expression. Drug Metab. Dispos. 25, 1272-1281.
- Geary, R. S., Watanabe, T. A., Truong, L., Freier, S., Lesnik, E. A., Sioufi, N. B., Sasmor, H., Manoharan, M. and Levin, A. A. (2001) Pharmacokinetic properties of 2'-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J. Pharmacol. Exp. Ther. 296, 890-897.
- Gupta, A., Bahal, R., Gupta, M., Glazer, P. M. and Saltzman, W. M. (2016) Nanotechnology for delivery of peptide nucleic acids (PNAs). J. Control. Release 240, 302-311. https://doi.org/10.1016/j.jconrel.2016.01.005
- Gupta, A., Mishra, A. and Puri, N. (2017) Peptide nucleic acids: advanced tools for biomedical applications. J. Biotechnol. 259, 148-159. https://doi.org/10.1016/j.jbiotec.2017.07.026
- Hagedorn, P. H., Yakimov, V., Ottosen, S., Kammler, S., Nielsen, N. F., Hog, A. M., Hedtjarn, M., Meldgaard, M., Moller, M. R., Orum, H., Koch, T. and Lindow, M. (2013) Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern. Nucleic Acid Ther. 23, 302-310. https://doi.org/10.1089/nat.2013.0436
- Hammond, S. M., Sergeeva, O. V., Melnikov, P. A., Goli, L., Stoodley, J., Zatsepin, T. S., Stetsenko, D. A. and Wood, M. J. A. (2021) Mesyl phosphoramidate oligonucleotides as potential splice-switching agents: impact of backbone structure on activity and intracellular localization. Nucleic Acid Ther. 31, 190-200. https://doi.org/10.1089/nat.2020.0860
- Henry, S., Stecker, K., Brooks, D., Monteith, D., Conklin, B. and Bennett, C. F. (2000) Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J. Pharmacol. Exp. Ther. 292, 468-479.
- Hua, Y., Vickers, T. A., Baker, B. F., Bennett, C. F. and Krainer, A. R. (2007) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol. 5, e73.
- Huang, L., Low, A., Damle, S. S., Keenan, M. M., Kuntz, S., Murray, S. F., Monia, B. P. and Guo, S. (2018) Antisense suppression of the nonsense mediated decay factor Upf3b as a potential treatment for diseases caused by nonsense mutations. Genome Biol. 19, 4.
- Iversen, P. L., Arora, V., Acker, A. J., Mason, D. H. and Devi, G. R. (2003) Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a Phase I safety study in humans. Clin. Cancer Res. 9, 2510-2519.
- Juliano, R. L. (2018) Intracellular trafficking and endosomal release of oligonucleotides: what we know and what we don't. Nucleic Acid Ther. 28, 166-177. https://doi.org/10.1089/nat.2018.0727
- Juliano, R. L., Wang, L., Tavares, F., Brown, E. G., James, L., Ariyarathna, Y., Ming, X., Mao, C. and Suto, M. (2018) Structure-activity relationships and cellular mechanism of action of small molecules that enhance the delivery of oligonucleotides. Nucleic Acids Res. 46, 1601-1613. https://doi.org/10.1093/nar/gkx1320
- Kamola, P. J., Kitson, J. D., Turner, G., Maratou, K., Eriksson, S., Panjwani, A., Warnock, L. C., Douillard Guilloux, G. A., Moores, K., Koppe, E. L., Wixted, W. E., Wilson, P. A., Gooderham, N. J., Gant, T. W., Clark, K. L., Hughes, S. A., Edbrooke, M. R. and Parry, J. D. (2015) In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Nucleic Acids Res. 43, 8638-8650. https://doi.org/10.1093/nar/gkv857
- Kim, J., Hu, C., Moufawad El Achkar, C., Black, L. E., Douville, J., Larson, A., Pendergast, M. K., Goldkind, S. F., Lee, E. A., Kuniholm, A., Soucy, A., Vaze, J., Belur, N. R., Fredriksen, K., Stojkovska, I., Tsytsykova, A., Armant, M., DiDonato, R. L., Choi, J., Cornelissen, L., Pereira, L. M., Augustine, E. F., Genetti, C. A., Dies, K., Barton, B., Williams, L., Goodlett, B. D., Riley, B. L., Pasternak, A., Berry, E. R., Pflock, K. A., Chu, S., Reed, C., Tyndall, K., Agrawal, P. B., Beggs, A. H., Grant, P. E., Urion, D. K., Snyder, R. O., Waisbren, S. E., Poduri, A., Park, P. J., Patterson, A., Biffi, A., Mazzulli, J. R., Bodamer, O., Berde, C. B. and Yu, T. W. (2019) Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644-1652. https://doi.org/10.1056/NEJMoa1813279
- Kim, Y. J., Nomakuchi, T., Papaleonidopoulou, F., Yang, L., Zhang, Q. and Krainer, A. R. (2022) Gene-specific nonsense-mediated mRNA decay targeting for cystic fibrosis therapy. Nat. Commun. 13, 2978.
- Knerr, L., Prakash, T. P., Lee, R., Drury Iii, W. J., Nikan, M., Fu, W., Pirie, E., Maria, L. D., Valeur, E., Hayen, A., Olwegard-Halvarsson, M., Broddefalk, J., Ammala, C., Ostergaard, M. E., Meuller, J., Sundstrom, L., Andersson, P., Janzen, D., Jansson-Lofmark, R., Seth, P. P. and Andersson, S. (2021) Glucagon Like Peptide 1 Receptor agonists for targeted delivery of antisense oligonucleotides to pancreatic beta cell. J. Am. Chem. Soc. 143, 3416-3429. https://doi.org/10.1021/jacs.0c12043
- Koller, E., Vincent, T. M., Chappell, A., De, S., Manoharan, M. and Bennett, C. F. (2011) Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res. 39, 4795-4807. https://doi.org/10.1093/nar/gkr089
- Kondow-McConaghy, H. M., Muthukrishnan, N., Erazo-Oliveras, A., Najjar, K., Juliano, R. L. and Pellois, J.-P. (2020) Impact of the endosomal escape activity of cell-penetrating peptides on the endocytic pathway. ACS Chem. Biol. 15, 2355-2363. https://doi.org/10.1021/acschembio.0c00319
- Koshkin, A. A., Singh, S. K., Nielsen, P., Rajwanshi, V. K., Kumar, R., Meldgaard, M., Olsen, C. E. and Wengel, J. (1998) LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54, 3607-3630. https://doi.org/10.1016/S0040-4020(98)00094-5
- Kotikam, V. and Rozners, E. (2020) Amide-modified RNA: using protein backbone to modulate function of short interfering RNAs. Acc. Chem. Res. 53, 1782-1790. https://doi.org/10.1021/acs.accounts.0c00249
- Liang, X.-h., Sun, H., Hsu, C.-W., Nichols, J. G., Vickers, T. A., De Hoyos, C. L. and Crooke, S. T. (2019a) Golgi-endosome transport mediated by M6PR facilitates release of antisense oligonucleotides from endosomes. Nucleic Acids Res. 48, 1372-1391. https://doi.org/10.1093/nar/gkz1171
- Liang, X.-h., Sun, H., Shen, W., Wang, S., Yao, J., Migawa, M. T., Bui, H.-H., Damle, S. S., Riney, S., Graham, M. J., Crooke, R. M. and Crooke, S. T. (2017) Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels. Nucleic Acids Res. 45, 9528-9546. https://doi.org/10.1093/nar/gkx632
- Liang, X. H., Nichols, J. G., Hsu, C. W., Vickers, T. A. and Crooke, S. T. (2019b) mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway. Nucleic Acids Res. 47, 6900-6916. https://doi.org/10.1093/nar/gkz500
- Liang, X. H., Shen, W., Sun, H., Kinberger, G. A., Prakash, T. P., Nichols, J. G. and Crooke, S. T. (2016a) Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity. Nucleic Acids Res. 44, 3892-3907. https://doi.org/10.1093/nar/gkw144
- Liang, X. H., Shen, W., Sun, H., Migawa, M. T., Vickers, T. A. and Crooke, S. T. (2016b) Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol. 34, 875-880. https://doi.org/10.1038/nbt.3589
- Liang, X. H., Sun, H., Nichols, J. G., Allen, N., Wang, S., Vickers, T. A., Shen, W., Hsu, C. W. and Crooke, S. T. (2018) COPII vesicles can affect the activity of antisense oligonucleotides by facilitating the release of oligonucleotides from endocytic pathways. Nucleic Acids Res. 46, 10225-10245. https://doi.org/10.1093/nar/gky841
- Liang, X. H., Sun, H., Shen, W. and Crooke, S. T. (2015) Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res. 43, 2927-2945. https://doi.org/10.1093/nar/gkv143
- Lim, K. H., Han, Z., Jeon, H. Y., Kach, J., Jing, E., Weyn-Vanhentenryck, S., Downs, M., Corrionero, A., Oh, R., Scharner, J., Venkatesh, A., Ji, S., Liau, G., Ticho, B., Nash, H. and Aznarez, I. (2020) Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat. Commun. 11, 3501.
- Lima, W. F., Prakash, T. P., Murray, H. M., Kinberger, G. A., Li, W., Chappell, A. E., Li, C. S., Murray, S. F., Gaus, H., Seth, P. P., Swayze, E. E. and Crooke, S. T. (2012) Single-stranded siRNAs activate RNAi in animals. Cell 150, 883-894. https://doi.org/10.1016/j.cell.2012.08.014
- Lima, W. F., Vickers, T. A., Nichols, J., Li, C. and Crooke, S. T. (2014) Defining the factors that contribute to on-target specificity of antisense oligonucleotides. PLoS One 9, e101752.
- Lonn, P., Kacsinta, A. D., Cui, X.-S., Hamil, A. S., Kaulich, M., Gogoi, K. and Dowdy, S. F. (2016) Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci. Rep. 6, 32301.
- Makley, L. N. and Gestwicki, J. E. (2013) Expanding the number of 'druggable' targets: non-enzymes and protein-protein interactions. Chem. Biol. Drug Des. 81, 22-32. https://doi.org/10.1111/cbdd.12066
- McDonald, C. M., Shieh, P. B., Abdel-Hamid, H. Z., Connolly, A. M., Ciafaloni, E., Wagner, K. R., Goemans, N., Mercuri, E., Khan, N., Koenig, E., Malhotra, J., Zhang, W., Han, B. and Mendell, J. R. (2021) Open-label evaluation of eteplirsen in patients with Duchenne muscular dystrophy amenable to exon 51 skipping: PROMOVI trial. J. Neuromuscul. Dis. 8, 989-1001. https://doi.org/10.3233/JND-210643
- Melton, D. A. (1985) Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc. Natl. Acad. Sci. U. S. A. 82, 144-148. https://doi.org/10.1073/pnas.82.1.144
- Migawa, M. T., Shen, W., Wan, W. B., Vasquez, G., Oestergaard, M. E., Low, A., De Hoyos, C. L., Gupta, R., Murray, S., Tanowitz, M., Bell, M., Nichols, J. G., Gaus, H., Liang, X. H., Swayze, E. E., Crooke, S. T. and Seth, P. P. (2019) Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Res. 47, 5465-5479. https://doi.org/10.1093/nar/gkz247
- Miller, C. M., Donner, A. J., Blank, E. E., Egger, A. W., Kellar, B. M., Ostergaard, M. E., Seth, P. P. and Harris, E. N. (2016) Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res. 44, 2782-2794. https://doi.org/10.1093/nar/gkw112
- Miller, P. S., Yano, J., Yano, E., Carroll, C., Jayaraman, K. and Ts'o, P. O. (1979) Nonionic nucleic acid analogues. Synthesis and characterization of dideoxyribonucleoside methylphosphonates. Biochemistry 18, 5134-5143. https://doi.org/10.1021/bi00590a017
- Miroshnichenko, S. K., Patutina, O. A., Burakova, E. A., Chelobanov, B. P., Fokina, A. A., Vlassov, V. V., Altman, S., Zenkova, M. A. and Stetsenko, D. A. (2019) Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc. Natl. Acad. Sci. U. S. A. 116, 1229-1234. https://doi.org/10.1073/pnas.1813376116
- Monia, B. P., Lesnik, E. A., Gonzalez, C., Lima, W. F., McGee, D., Guinosso, C. J., Kawasaki, A. M., Cook, P. D. and Freier, S. M. (1993) Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514-14522. https://doi.org/10.1016/S0021-9258(19)85268-7
- Mutisya, D., Hardcastle, T., Cheruiyot, S. K., Pallan, P. S., Kennedy, S. D., Egli, M., Kelley, M. L., Smith, A. V. B. and Rozners, E. (2017) Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs. Nucleic Acids Res. 45, 8142-8155. https://doi.org/10.1093/nar/gkx558
- Nomakuchi, T. T., Rigo, F., Aznarez, I. and Krainer, A. R. (2016) Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 34, 164-166. https://doi.org/10.1038/nbt.3427
- Obika, S., Nanbu, D., Hari, Y., Morio, K.-i., In, Y., Ishida, T. and Imanishi, T. (1997) Synthesis of 2'-O,4'-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Lett. 38, 8735-8738. https://doi.org/10.1016/S0040-4039(97)10322-7
- Orom, U. A., Kauppinen, S. and Lund, A. H. (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372, 137-141. https://doi.org/10.1016/j.gene.2005.12.031
- Patutina, O. A., Gaponova Miroshnichenko, S. K., Sen'kova, A. V., Savin, I. A., Gladkikh, D. V., Burakova, E. A., Fokina, A. A., Maslov, M. A., Shmendel, E. V., Wood, M. J. A., Vlassov, V. V., Altman, S., Stetsenko, D. A. and Zenkova, M. A. (2020) Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR21 with enhanced in vivo therapeutic potency. Proc. Natl. Acad. Sci. U. S. A. 117, 32370-32379. https://doi.org/10.1073/pnas.2016158117
- Plavec, J., Tong, W. and Chattopadhyaya, J. (1993) How do the gauche and anomeric effects drive the pseudorotational equilibrium of the pentofuranose moiety of nucleosides? J. Am. Chem. Soc. 115, 9734-9746. https://doi.org/10.1021/ja00074a046
- Prakash, T. P., Graham, M. J., Yu, J., Carty, R., Low, A., Chappell, A., Schmidt, K., Zhao, C., Aghajan, M., Murray, H. F., Riney, S., Booten, S. L., Murray, S. F., Gaus, H., Crosby, J., Lima, W. F., Guo, S., Monia, B. P., Swayze, E. E. and Seth, P. P. (2014) Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 42, 8796-8807. https://doi.org/10.1093/nar/gku531
- Sands, H., Gorey-Feret, L. J., Cocuzza, A. J., Hobbs, F. W., Chidester, D. and Trainor, G. L. (1994) Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol. Pharmacol. 45, 932-943.
- Servais, L., Mercuri, E., Straub, V., Guglieri, M., Seferian, A. M., Scoto, M., Leone, D., Koenig, E., Khan, N., Dugar, A., Wang, X., Han, B., Wang, D. and Muntoni, F. (2022) Long-term safety and efficacy data of golodirsen in ambulatory patients with Duchenne muscular dystrophy amenable to exon 53 skipping: a first-in-human, multicenter, two-part, open-label, phase 1/2 trial. Nucleic Acid Ther. 32, 29-39. https://doi.org/10.1089/nat.2021.0043
- Seth, P. P., Siwkowski, A., Allerson, C. R., Vasquez, G., Lee, S., Prakash, T. P., Wancewicz, E. V., Witchell, D. and Swayze, E. E. (2009a) Short antisense oligonucleotides with novel 2'-4' conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J. Med. Chem. 52, 10-13. https://doi.org/10.1021/jm801294h
- Seth, P. P., Siwkowski, A., Allerson, C. R., Vasquez, G., Lee, S., Prakash, T. P., Wancewicz, E. V., Witchell, D. and Swayze, E. E. (2009b) Short antisense oligonucleotides with novel 2'-4' conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J. Med. Chem. 52, 10-13. https://doi.org/10.1021/jm801294h
- Shen, W., De Hoyos, C. L., Migawa, M. T., Vickers, T. A., Sun, H., Low, A., Bell, T. A., 3rd, Rahdar, M., Mukhopadhyay, S., Hart, C. E., Bell, M., Riney, S., Murray, S. F., Greenlee, S., Crooke, R. M., Liang, X. H., Seth, P. P. and Crooke, S. T. (2019) Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 37, 640-650. https://doi.org/10.1038/s41587-019-0106-2
- Sheng, L., Rigo, F., Bennett, C. F., Krainer, A. R. and Hua, Y. (2020) Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res. 48, 2853-2865. https://doi.org/10.1093/nar/gkaa126
- Song, J. J., Smith, S. K., Hannon, G. J. and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437. https://doi.org/10.1126/science.1102514
- Stec, W. J., Zon, G. and Egan, W. (1984) Automated solid-phase synthesis, separation, and stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J. Am. Chem. Soc. 106, 6077-6079. https://doi.org/10.1021/ja00332a054
- Stockert, R. J. (1995) The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol. Rev. 75, 591-609. https://doi.org/10.1152/physrev.1995.75.3.591
- Summerton, J. and Weller, D. (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187-195. https://doi.org/10.1089/oli.1.1997.7.187
- Swayze, E. E., Siwkowski, A. M., Wancewicz, E. V., Migawa, M. T., Wyrzykiewicz, T. K., Hung, G., Monia, B. P. and Bennett, C. F. (2007) Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 35, 687-700. https://doi.org/10.1093/nar/gkl1071
- Taylor, R. E. and Zahid, M. (2020) Cell penetrating peptides, novel vectors for gene therapy. Pharmaceutics 12, 225.
- Teplova, M., Minasov, G., Tereshko, V., Inamati, G. B., Cook, P. D., Manoharan, M. and Egli, M. (1999) Crystal structure and improved antisense properties of 2'-O-(2-methoxyethyl)-RNA. Nat. Struct. Biol. 6, 535-539. https://doi.org/10.1038/9304
- Vickers, T. A. and Crooke, S. T. (2016) Development of a quantitative BRET affinity assay for nucleic acid-protein interactions. PLoS One 11, e0161930.
- Vickers, T. A., Rahdar, M., Prakash, T. P. and Crooke, S. T. (2019) Kinetic and subcellular analysis of PS-ASO/protein interactions with P54nrb and RNase H1. Nucleic Acids Res. 47, 10865-10880. https://doi.org/10.1093/nar/gkz771
- Vickers, T. A., Wyatt, J. R., Burckin, T., Bennett, C. F. and Freier, S. M. (2001) Fully modified 2' MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res. 29, 1293-1299. https://doi.org/10.1093/nar/29.6.1293
- Volpi, S., Cancelli, U., Neri, M. and Corradini, R. (2020) Multifunctional delivery systems for peptide nucleic acids. Pharmaceuticals (Basel) 14, 14.
- Wagner, K. R., Kuntz, N. L., Koenig, E., East, L., Upadhyay, S., Han, B. and Shieh, P. B. (2021) Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: a randomized, double-blind, placebocontrolled, dose-titration trial. Muscle Nerve 64, 285-292. https://doi.org/10.1002/mus.27347
- Wang, L., Ariyarathna, Y., Ming, X., Yang, B., James, L. I., Kreda, S. M., Porter, M., Janzen, W. and Juliano, R. L. (2017) A novel family of small molecules that enhance the intracellular delivery and pharmacological effectiveness of antisense and splice switching oligonucleotides. ACS Chem. Biol. 12, 1999-2007. https://doi.org/10.1021/acschembio.7b00242
- Ward, A. J., Norrbom, M., Chun, S., Bennett, C. F. and Rigo, F. (2014) Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res. 42, 5871-5879. https://doi.org/10.1093/nar/gku184
- Wu, H., Lima, W. F., Zhang, H., Fan, A., Sun, H. and Crooke, S. T. (2004) Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J. Biol. Chem. 279, 17181-17189. https://doi.org/10.1074/jbc.M311683200
- Yanai, H., Chiba, S., Ban, T., Nakaima, Y., Onoe, T., Honda, K., Ohdan, H. and Taniguchi, T. (2011) Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs). Proc. Natl. Acad. Sci. U. S. A. 108, 11542-11547. https://doi.org/10.1073/pnas.1108535108
- Yang, B., Ming, X., Cao, C., Laing, B., Yuan, A., Porter, M. A., HullRyde, E. A., Maddry, J., Suto, M., Janzen, W. P. and Juliano, R. L. (2015) High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides. Nucleic Acids Res. 43, 1987-1996. https://doi.org/10.1093/nar/gkv060
- Yoshida, T., Morihiro, K., Naito, Y., Mikami, A., Kasahara, Y., Inoue, T. and Obika, S. (2022) Identification of nucleobase chemical modifications that reduce the hepatotoxicity of gapmer antisense oligonucleotides. Nucleic Acids Res. 50, 7224-7234. https://doi.org/10.1093/nar/gkac562
- Zamecnik, P. C. and Stephenson, M. L. (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. U. S. A. 75, 280-284. https://doi.org/10.1073/pnas.75.1.280
- Zhang, L., Liang, X. H., De Hoyos, C. L., Migawa, M., Nichols, J. G., Freestone, G., Tian, J., Seth, P. P. and Crooke, S. T. (2022) The combination of mesyl-phosphoramidate inter-nucleotide linkages and 2'-O-methyl in selected positions in the antisense oligonucleotide enhances the performance of RNaseH1 active PSASOs. Nucleic Acid Ther. 32, 401-411. https://doi.org/10.1089/nat.2022.0005
- Zimmermann, T. S., Karsten, V., Chan, A., Chiesa, J., Boyce, M., Bettencourt, B. R., Hutabarat, R., Nochur, S., Vaishnaw, A. and Gollob, J. (2017) Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol. Ther. 25, 71-78. https://doi.org/10.1016/j.ymthe.2016.10.019