DOI QR코드

DOI QR Code

Antisense Oligonucleotide Therapeutics for Cystic Fibrosis: Recent Developments and Perspectives

  • Young Jin Kim (Department of Pediatrics, Mount Sinai Hospital) ;
  • Adrian R. Krainer (Cold Spring Harbor Laboratory)
  • Received : 2022.11.08
  • Accepted : 2022.11.23
  • Published : 2023.01.31

Abstract

Antisense oligonucleotide (ASO) technology has become an attractive therapeutic modality for various diseases, including Mendelian disorders. ASOs can modulate the expression of a target gene by promoting mRNA degradation or changing pre-mRNA splicing, nonsense-mediated mRNA decay, or translation. Advances in medicinal chemistry and a deeper understanding of post-transcriptional mechanisms have led to the approval of several ASO drugs for diseases that had long lacked therapeutic options. For instance, an ASO drug called nusinersen became the first approved drug for spinal muscular atrophy, improving survival and the overall disease course. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Although Trikafta and other CFTR-modulation therapies benefit most CF patients, there is a significant unmet therapeutic need for a subset of CF patients. In this review, we introduce ASO therapies and their mechanisms of action, describe the opportunities and challenges for ASO therapeutics for CF, and discuss the current state and prospects of ASO therapies for CF.

Keywords

Acknowledgement

A.R.K. acknowledges support from NIH grant R37GM042699.

References

  1. Aartsma-Rus, A. and Corey, D.R. (2020). The 10th oligonucleotide therapy approved: golodirsen for Duchenne muscular dystrophy. Nucleic Acid Ther. 30, 67-70. https://doi.org/10.1089/nat.2020.0845
  2. Bennett, C.F. (2019). Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307-321. https://doi.org/10.1146/annurev-med-041217-010829
  3. Benson, M.D., Waddington-Cruz, M., Berk, J.L., Polydefkis, M., Dyck, P.J., Wang, A.K., Plante-Bordeneuve, V., Barroso, F.A., Merlini, G., Obici, L., et al. (2018). Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22-31. https://doi.org/10.1056/NEJMoa1716793
  4. CFTR1 (Cystic Fibrosis Mutation Database) (2022). CFMDB Statistics. Retrieved October 22, 2022, from http://www.genet.sickkids.on.ca/ StatisticsPage.html
  5. CFTR2 (Clinical and Functional TRanslation of CFTR) (2022). CFTR2 Variant List History. Retrieved April 29, 2022, from https://cftr2.org/sites/default/ files/CFTR2_29April2022.xlsx
  6. Chiba-Falek, O., Kerem, E., Shoshani, T., Aviram, M., Augarten, A., Bentur, L., Tal, A., Tullis, E., Rahat, A., and Kerem, B. (1998). The molecular basis of disease variability among cystic fibrosis patients carrying the 3849+10 kb C→T mutation. Genomics 53, 276-283. https://doi.org/10.1006/geno.1998.5517
  7. Clancy, J.P., Rowe, S.M., Bebok, Z., Aitken, M.L., Gibson, R., Zeitlin, P., Berclaz, P., Moss, R., Knowles, M.R., Oster, R.A., et al. (2007). No detectable improvements in cystic fibrosis transmembrane conductance regulator by nasal aminoglycosides in patients with cystic fibrosis with stop mutations. Am. J. Respir. Cell Mol. Biol. 37, 57-66. https://doi.org/10.1165/rcmb.2006-0173OC
  8. Clarke, L.A., Awatade, N.T., Felicio, V.M., Silva, I.A., Calucho, M., Pereira, L., Azevedo, P., Cavaco, J., Barreto, C., Bertuzzo, C., et al. (2019). The effect of premature termination codon mutations on CFTR mRNA abundance in human nasal epithelium and intestinal organoids: a basis for readthrough therapies in cystic fibrosis. Hum. Mutat. 40, 326-334.
  9. Crooke, S.T. (2007). Antisense Drug Technology: Principles, Strategies, and Applications (2nd Edition) (Boca Raton: CRC Press).
  10. Crooke, S.T., Baker, B.F., Crooke, R.M., and Liang, X.H. (2021). Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427-453. https://doi.org/10.1038/s41573-021-00162-z
  11. Crosby, J.R., Zhao, C., Jiang, C., Bai, D., Katz, M., Greenlee, S., Kawabe, H., McCaleb, M., Rotin, D., Guo, S., et al. (2017). Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice. J. Cyst. Fibros. 16, 671-680. https://doi.org/10.1016/j.jcf.2017.05.003
  12. Cystic Fibrosis Foundation (2021). 2020 Patient Registry Annual Data Report. Retrieved September 15, 2021, from https://www.cff.org/sites/ default/files/2021-10/2019-Patient-Registry-Annual-Data-Report.pdf
  13. Cystic Fibrosis Foundation (2022). Drug Development Pipeline. Retrieved October 23, 2022, from https://apps.cff.org/trials/pipeline/
  14. Dang, Y., van Heusden, C., Nickerson, V., Chung, F., Wang, Y., Quinney, N.L., Gentzsch, M., Randell, S.H., Moulton, H.M., Kole, R., et al. (2021). Enhanced delivery of peptide-morpholino oligonucleotides with a small molecule to correct splicing defects in the lung. Nucleic Acids Res. 49, 6100-6113. https://doi.org/10.1093/nar/gkab488
  15. Darras, B.T., Farrar, M.A., Mercuri, E., Finkel, R.S., Foster, R., Hughes, S.G., Bhan, I., Farwell, W., and Gheuens, S. (2019). An integrated safety analysis of infants and children with symptomatic spinal muscular atrophy (SMA) treated with nusinersen in seven clinical trials. CNS Drugs 33, 919-932. https://doi.org/10.1007/s40263-019-00656-w
  16. De Boeck, K. and Amaral, M.D. (2016). Progress in therapies for cystic fibrosis. Lancet Respir. Med. 4, 662-674. https://doi.org/10.1016/S2213-2600(16)00023-0
  17. Dhillon, S. (2020). Viltolarsen: first approval. Drugs 80, 1027-1031. https://doi.org/10.1007/s40265-020-01339-3
  18. Drevinek, P., Pressler, T., Cipolli, M., De Boeck, K., Schwarz, C., Bouisset, F., Boff, M., Henig, N., Paquette-Lamontagne, N., Montgomery, S., et al. (2020). Antisense oligonucleotide eluforsen is safe and improves respiratory symptoms in F508DEL cystic fibrosis. J. Cyst. Fibros. 19, 99-107. https://doi.org/10.1016/j.jcf.2019.05.014
  19. Dukovski, D., Villella, A., Bastos, C., King, R., Finley, D., Kelly, J.W., Morimoto, R.I., Hartl, F.U., Munoz, B., Lee, P.S., et al. (2020). Amplifiers cotranslationally enhance CFTR biosynthesis via PCBP1-mediated regulation of CFTR mRNA. J. Cyst. Fibros. 19, 733-741. https://doi.org/10.1016/j.jcf.2020.02.006
  20. Fiedorczuk, K. and Chen, J. (2022). Mechanism of CFTR correction by type I folding correctors. Cell 185, 158-168.e11. https://doi.org/10.1016/j.cell.2021.12.009
  21. Finkel, R.S., Mercuri, E., Darras, B.T., Connolly, A.M., Kuntz, N.L., Kirschner, J., Chiriboga, C.A., Saito, K., Servais, L., Tizzano, E., et al. (2017). Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723-1732. https://doi.org/10.1056/NEJMoa1702752
  22. Friedman, K.J., Kole, J., Cohn, J.A., Knowles, M.R., Silverman, L.M., and Kole, R. (1999). Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J. Biol. Chem. 274, 36193-36199. https://doi.org/10.1074/jbc.274.51.36193
  23. Giuliano, K.A., Wachi, S., Drew, L., Dukovski, D., Green, O., Bastos, C., Cullen, M.D., Hauck, S., Tait, B.D., Munoz, B., et al. (2018). Use of a highthroughput phenotypic screening strategy to identify amplifiers, a novel pharmacological class of small molecules that exhibit functional synergy with potentiators and correctors. SLAS Discov. 23, 111-121. https://doi.org/10.1177/2472555217729790
  24. Haggie, P.M., Phuan, P.W., Tan, J.A., Xu, H., Avramescu, R.G., Perdomo, D., Zlock, L., Nielson, D.W., Finkbeiner, W.E., Lukacs, G.L., et al. (2017). Correctors and potentiators rescue function of the truncated W1282Xcystic fibrosis transmembrane regulator (CFTR) translation product. J. Biol. Chem. 292, 771-785. https://doi.org/10.1074/jbc.M116.764720
  25. Harris, A. (2021). Human Molecular Genetics and the long road to treating cystic fibrosis. Hum. Mol. Genet. 30(R2), R264-R273. https://doi.org/10.1093/hmg/ddab191
  26. Heijerman, H.G.M., McKone, E.F., Downey, D.G., Van Braeckel, E., Rowe, S.M., Tullis, E., Mall, M.A., Welter, J.J., Ramsey, B.W., McKee, C.M., et al. (2019). Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 394, 1940-1948. https://doi.org/10.1016/S0140-6736(19)32597-8
  27. Huang, L., Low, A., Damle, S.S., Keenan, M.M., Kuntz, S., Murray, S.F., Monia, B.P., and Guo, S. (2018). Antisense suppression of the nonsense mediated decay factor Upf3b as a potential treatment for diseases caused by nonsense mutations. Genome Biol. 19, 4.
  28. Keating, D., Marigowda, G., Burr, L., Daines, C., Mall, M.A., McKone, E.F., Ramsey, B.W., Rowe, S.M., Sass, L.A., Tullis, E., et al. (2018). VX445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N. Engl. J. Med. 379, 1612-1620. https://doi.org/10.1056/NEJMoa1807120
  29. Keeling, K.M., Wang, D., Dai, Y., Murugesan, S., Chenna, B., Clark, J., Belakhov, V., Kandasamy, J., Velu, S.E., Baasov, T., et al. (2013). Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression. PLoS One 8, e60478.
  30. Keenan, M.M., Huang, L., Jordan, N.J., Wong, E., Cheng, Y., Valley, H.C., Mahiou, J., Liang, F., Bihler, H., Mense, M., et al. (2019). Nonsensemediated RNA decay pathway inhibition restores expression and function of W1282X CFTR. Am. J. Respir. Cell Mol. Biol. 61, 290-300. https://doi.org/10.1165/rcmb.2018-0316OC
  31. Kerem, E. (2004). Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr. Opin. Pulm. Med. 10, 547-552. https://doi.org/10.1097/01.mcp.0000141247.22078.46
  32. Kerem, E. (2020). ELX-02: an investigational read-through agent for the treatment of nonsense mutation-related genetic disease. Expert Opin. Investig. Drugs 29, 1347-1354. https://doi.org/10.1080/13543784.2020.1828862
  33. Khvorova, A. and Watts, J.K. (2017). The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238-248. https://doi.org/10.1038/nbt.3765
  34. Kim, Y.J., Nomakuchi, T., Papaleonidopoulou, F., Yang, L., Zhang, Q., and Krainer, A.R. (2022a). Gene-specific nonsense-mediated mRNA decay targeting for cystic fibrosis therapy. Nat. Commun. 13, 2978.
  35. Kim, Y.J., Sivetz, N., Layne, J., Voss, D.M., Yang, L., Zhang, Q., and Krainer, A.R. (2022b). Exon-skipping antisense oligonucleotides for cystic fibrosis therapy. Proc. Natl. Acad. Sci. U. S. A. 119, e2114858118.
  36. Kurosaki, T., Popp, M.W., and Maquat, L.E. (2019). Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406-420. https://doi.org/10.1038/s41580-019-0126-2
  37. Labiris, N.R. and Dolovich, M.B. (2003). Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 56, 588-599. https://doi.org/10.1046/j.1365-2125.2003.01892.x
  38. Lentini, L., Melfi, R., Di Leonardo, A., Spinello, A., Barone, G., Pace, A., Palumbo Piccionello, A., and Pibiri, I. (2014). Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay. Mol. Pharm. 11, 653-664. https://doi.org/10.1021/mp400230s
  39. Linde, L., Boelz, S., Nissim-Rafinia, M., Oren, Y.S., Wilschanski, M., Yaacov, Y., Virgilis, D., Neu-Yilik, G., Kulozik, A.E., Kerem, E., et al. (2007). Nonsensemediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J. Clin. Invest. 117, 683-692. https://doi.org/10.1172/JCI28523
  40. Michaels, W.E., Bridges, R.J., and Hastings, M.L. (2020). Antisense oligonucleotide-mediated correction of CFTR splicing improves chloride secretion in cystic fibrosis patient-derived bronchial epithelial cells. Nucleic Acids Res. 48, 7454-7467. https://doi.org/10.1093/nar/gkaa490
  41. Michaels, W.E., Pena-Rasgado, C., Kotaria, R., Bridges, R.J., and Hastings, M.L. (2022). Open reading frame correction using splice-switching antisense oligonucleotides for the treatment of cystic fibrosis. Proc. Natl. Acad. Sci. U. S. A. 119, e2114886119.
  42. Middleton, P.G., Mall, M.A., Drevinek, P., Lands, L.C., McKone, E.F., Polineni, D., Ramsey, B.W., Taylor-Cousar, J.L., Tullis, E., Vermeulen, F., et al. (2019). Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N. Engl. J. Med. 381, 1809-1819. https://doi.org/10.1056/NEJMoa1908639
  43. Moschos, S.A., Usher, L., and Lindsay, M.A. (2017). Clinical potential of oligonucleotide-based therapeutics in the respiratory system. Pharmacol. Ther. 169, 83-103. https://doi.org/10.1016/j.pharmthera.2016.10.009
  44. Mutyam, V., Libby, E.F., Peng, N., Hadjiliadis, D., Bonk, M., Solomon, G.M., and Rowe, S.M. (2017). Therapeutic benefit observed with the CFTR potentiator, ivacaftor, in a CF patient homozygous for the W1282X CFTR nonsense mutation. J. Cyst. Fibros. 16, 24-29. https://doi.org/10.1016/j.jcf.2016.09.005
  45. Nomakuchi, T.T., Rigo, F., Aznarez, I., and Krainer, A.R. (2016). Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 34, 164-166. https://doi.org/10.1038/nbt.3427
  46. Oren, Y.S., Avizur-Barchad, O., Ozeri-Galai, E., Elgrabli, R., Schirelman, M.R., Blinder, T., Stampfer, C.D., Ordan, M., Laselva, O., Cohen-Cymberknoh, M., et al. (2022). Antisense oligonucleotide splicing modulation as a novel Cystic Fibrosis therapeutic approach for the W1282X nonsense mutation. J. Cyst. Fibros. 21, 630-636. https://doi.org/10.1016/j.jcf.2021.12.012
  47. Oren, Y.S., Irony-Tur Sinai, M., Golec, A., Barchad-Avitzur, O., Mutyam, V., Li, Y., Hong, J., Ozeri-Galai, E., Hatton, A., Leibson, C., et al. (2021). Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation. J. Cyst. Fibros. 20, 865-875. https://doi.org/10.1016/j.jcf.2021.06.003
  48. Ostrowski, L.E., Yin, W., Diggs, P.S., Rogers, T.D., O'Neal, W.K., and Grubb, B.R. (2007). Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice. Gene Ther. 14, 1492-1501. https://doi.org/10.1038/sj.gt.3302994
  49. Pascual-Morena, C., Cavero-Redondo, I., Alvarez-Bueno, C., Mesas, A.E., Pozuelo-Carrascosa, D., and Martinez-Vizcaino, V. (2020). Restorative treatments of dystrophin expression in Duchenne muscular dystrophy: a systematic review. Ann. Clin. Transl. Neurol. 7, 1738-1752. https://doi.org/10.1002/acn3.51149
  50. Pinto, M.C., Silva, I.A., Figueira, M.F., Amaral, M.D., and Lopes-Pacheco, M. (2021). Pharmacological modulation of ion channels for the treatment of cystic fibrosis. J. Exp. Pharmacol. 13, 693-723. https://doi.org/10.2147/JEP.S255377
  51. Raal, F.J., Santos, R.D., Blom, D.J., Marais, A.D., Charng, M.J., Cromwell, W.C., Lachmann, R.H., Gaudet, D., Tan, J.L., Chasan-Taber, S., et al. (2010). Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998-1006. https://doi.org/10.1016/S0140-6736(10)60284-X
  52. Ramsey, B.W., Davies, J., McElvaney, N.G., Tullis, E., Bell, S.C., Drevinek, P., Griese, M., McKone, E.F., Wainwright, C.E., Konstan, M.W., et al. (2011). A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663-1672. https://doi.org/10.1056/NEJMoa1105185
  53. Sanderlin, E.J., Keenan, M.M., Mense, M., Revenko, A.S., Monia, B.P., Guo, S., and Huang, L. (2022). CFTR mRNAs with nonsense codons are degraded by the SMG6-mediated endonucleolytic decay pathway. Nat. Commun. 13, 2344.
  54. Sasaki, S., Sun, R., Bui, H.H., Crosby, J.R., Monia, B.P., and Guo, S. (2019). Steric inhibition of 5' UTR regulatory elements results in upregulation of human CFTR. Mol. Ther. 27, 1749-1757. https://doi.org/10.1016/j.ymthe.2019.06.016
  55. Scharner, J., Ma, W.K., Zhang, Q., Lin, K.T., Rigo, F., Bennett, C.F., and Krainer, A.R. (2020). Hybridization-mediated off-target effects of spliceswitching antisense oligonucleotides. Nucleic Acids Res. 48, 802-816. https://doi.org/10.1093/nar/gkz1132
  56. Sharma, J., Du, M., Wong, E., Mutyam, V., Li, Y., Chen, J., Wangen, J., Thrasher, K., Fu, L., Peng, N., et al. (2021). A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion. Nat. Commun. 12, 4358.
  57. Shimo, T., Maruyama, R., and Yokota, T. (2018). Designing effective antisense oligonucleotides for exon skipping. Methods Mol. Biol. 1687, 143-155. https://doi.org/10.1007/978-1-4939-7374-3_10
  58. Shirley, M. (2021). Casimersen: first approval. Drugs 81, 875-879. https://doi.org/10.1007/s40265-021-01512-2
  59. Shteinberg, M., Haq, I.J., Polineni, D., and Davies, J.C. (2021). Cystic fibrosis. Lancet 397, 2195-2211. https://doi.org/10.1016/S0140-6736(20)32542-3
  60. Southern, K.W., Murphy, J., Sinha, I.P., and Nevitt, S.J. (2020). Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del). Cochrane Database Syst. Rev. 12, CD010966.
  61. Templin, M.V., Levin, A.A., Graham, M.J., Aberg, P.M., Axelsson, B.I., Butler, M., Geary, R.S., and Bennett, C.F. (2000). Pharmacokinetic and toxicity profile of a phosphorothioate oligonucleotide following inhalation delivery to lung in mice. Antisense Nucleic Acid Drug Dev. 10, 359-368. https://doi.org/10.1089/oli.1.2000.10.359
  62. Valley, H.C., Bukis, K.M., Bell, A., Cheng, Y., Wong, E., Jordan, N.J., Allaire, N.E., Sivachenko, A., Liang, F., Bihler, H., et al. (2019). Isogenic cell models of cystic fibrosis-causing variants in natively expressing pulmonary epithelial cells. J. Cyst. Fibros. 18, 476-483. https://doi.org/10.1016/j.jcf.2018.12.001
  63. Van Goor, F., Hadida, S., Grootenhuis, P.D., Burton, B., Cao, D., Neuberger, T., Turnbull, A., Singh, A., Joubran, J., Hazlewood, A., et al. (2009). Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. U. S. A. 106, 18825-18830. https://doi.org/10.1073/pnas.0904709106
  64. Voelker, R. (2019). Patients with cystic fibrosis have new triple-drug combination. JAMA 322, 2068.
  65. Wan, W.B. and Seth, P.P. (2016). The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem. 59, 9645-9667. https://doi.org/10.1021/acs.jmedchem.6b00551
  66. Wang, W., Hong, J.S., Rab, A., Sorscher, E.J., and Kirk, K.L. (2016). Robust stimulation of W1282X-CFTR channel activity by a combination of allosteric modulators. PLoS One 11, e0152232.
  67. Winkler, J. (2013). Oligonucleotide conjugates for therapeutic applications. Ther. Deliv. 4, 791-809. https://doi.org/10.4155/tde.13.47
  68. Witztum, J.L., Gaudet, D., Freedman, S.D., Alexander, V.J., Digenio, A., Williams, K.R., Yang, Q., Hughes, S.G., Geary, R.S., Arca, M., et al. (2019). Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N. Engl. J. Med. 381, 531-542. https://doi.org/10.1056/NEJMoa1715944
  69. Zaher, A., ElSaygh, J., Elsori, D., ElSaygh, H., and Sanni, A. (2021). A review of Trikafta: triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Cureus 13, e16144.
  70. Zainal Abidin, N., Haq, I.J., Gardner, A.I., and Brodlie, M. (2017). Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin. Pharmacother. 18, 1363-1371. https://doi.org/10.1080/14656566.2017.1359255