DOI QR코드

DOI QR Code

RNA in Therapeutics: CRISPR in the Clinic

  • Dana Carroll (Department of Biochemistry, University of Utah School of Medicine)
  • Received : 2022.10.30
  • Accepted : 2022.11.02
  • Published : 2023.01.31

Abstract

The advent of the CRISPR-Cas genome editing platform has greatly enhanced the capabilities of researchers in many areas of biology. Its use has also been turned to the development of therapies for genetic diseases and to the enhancement of cell therapies. This review describes some recent advances in these areas.

Keywords

Acknowledgement

I thank Dr. Sunjoo Jeong both for the excellent work she did in my lab as a graduate student years ago and for the invitation to write this review. I am grateful to people who contributed to genome editing research in my lab over many years, to colleagues with whom I have had fruitful discussion about CRISPR technology-its uses and misuses-and to the many people who have advanced the field of genome editing in marvelous and sometimes surprising ways.

References

  1. Amoasii, L., Hildyard, J.C.W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.R., Massey, C., Shelton, J.M., et al. (2018). Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86-91. https://doi.org/10.1126/science.aau1549
  2. Anzalone, A.V., Koblan, L.W., and Liu, D.R. (2020). Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824-844. https://doi.org/10.1038/s41587-020-0561-9
  3. Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157. https://doi.org/10.1038/s41586-019-1711-4
  4. Carroll, D. (2014). Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83, 409-439. https://doi.org/10.1146/annurev-biochem-060713-035418
  5. Carroll, D. (2019). Collateral damage: benchmarking off-target effects in genome editing. Genome Biol. 20, 114.
  6. Carroll, D. and Charo, R.A. (2015). The societal opportunities and challenges of genome editing. Genome Biol. 16, 242.
  7. Dabbous, O., Maru, B., Jansen, J.P., Lorenzi, M., Cloutier, M., Guerin, A., Pivneva, I., Wu, E.Q., Arjunji, R., Feltner, D., et al. (2019). Survival, motor function, and motor milestones: comparison of AVXS-101 relative to nusinersen for the treatment of infants with spinal muscular atrophy type 1. Adv. Ther. 36, 1164-1176. https://doi.org/10.1007/s12325-019-00923-8
  8. De Vivo, D.C., Bertini, E., Swoboda, K.J., Hwu, W.L., Crawford, T.O., Finkel, R.S., Kirschner, J., Kuntz, N.L., Parsons, J.A., Ryan, M.M., et al. (2019). Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul. Disord. 29, 842-856. https://doi.org/10.1016/j.nmd.2019.09.007
  9. Frangoul, H., Altshuler, D., Cappellini, M.D., Chen, Y.S., Domm, J., Eustace, B.K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., et al. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252-260. https://doi.org/10.1056/NEJMoa2031054
  10. Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R. (2017). Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 551, 464-471. https://doi.org/10.1038/nature24644
  11. Gillmore, J.D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M.L., Seitzer, J., O'Connell, D., Walsh, K.R., Wood, K., et al. (2021). CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493-502. https://doi.org/10.1056/NEJMoa2107454
  12. Herrick, J.B. (1910). Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch. Intern. Med. (Chic.) 6, 517-521. https://doi.org/10.1001/archinte.1910.00050330050003
  13. Ingram, V.M. (1957). Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180, 326-328. https://doi.org/10.1038/180326a0
  14. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. https://doi.org/10.1126/science.1225829
  15. Kanter, J., Walters, M.C., Krishnamurti, L., Mapara, M.Y., Kwiatkowski, J.L., Rifkin-Zenenberg, S., Aygun, B., Kasow, K.A., Pierciey, F.J., Jr., Bonner, M., et al. (2022). Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N. Engl. J. Med. 386, 617-628. https://doi.org/10.1056/NEJMoa2117175
  16. Keynes, M. and Cox, T.M. (2008). William Bateson, the rediscoverer of Mendel. J. R. Soc. Med. 101, 104.
  17. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424. https://doi.org/10.1038/nature17946
  18. Lattanzi, A., Camarena, J., Lahiri, P., Segal, H., Srifa, W., Vakulskas, C.A., Frock, R.L., Kenrick, J., Lee, C., Talbott, N., et al. (2021). Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci. Transl. Med. 13, eabf2444.
  19. Lawn, R.M., Fritsch, E.F., Parker, R.C., Blake, G., and Maniatis, T. (1978). The isolation and characterization of linked delta- and beta-globin genes from a cloned library of human DNA. Cell 15, 1157-1174. https://doi.org/10.1016/0092-8674(78)90043-0
  20. Levy, J.M., Yeh, W.H., Pendse, N., Davis, J.R., Hennessey, E., Butcher, R., Koblan, L.W., Comander, J., Liu, Q., and Liu, D.R. (2020). Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97-110. https://doi.org/10.1038/s41551-019-0501-5
  21. Li, C. and Samulski, R.J. (2020). Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255-272. https://doi.org/10.1038/s41576-019-0205-4
  22. Liu, N., Hargreaves, V.V., Zhu, Q., Kurland, J.V., Hong, J., Kim, W., Sher, F., Macias-Trevino, C., Rogers, J.M., Kurita, R., et al. (2018). Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430-442.e17. https://doi.org/10.1016/j.cell.2018.03.016
  23. Maeder, M.L., Stefanidakis, M., Wilson, C.J., Baral, R., Barrera, L.A., Bounoutas, G.S., Bumcrot, D., Chao, H., Ciulla, D.M., DaSilva, J.A., et al. (2019). Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 25, 229-233. https://doi.org/10.1038/s41591-018-0327-9
  24. Magis, W., DeWitt, M.A., Wyman, S.K., Vu, J.T., Heo, S.J., Shao, S.J., Hennig, F., Romero, Z.G., Campo-Fernandez, B., Said, S., et al. (2022). High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation. iScience 25, 104374.
  25. National Academy of Medicine, National Academy of Sciences, and The Royal Society (2020). Heritable Human Genome Editing (Washington, DC: National Academies Press).
  26. National Academies of Sciences, Engineering, and Medicine (2017). Human Genome Editing: Science, Ethics, and Governance (Washington, DC: National Academies Press).
  27. Newby, G.A., Yen, J.S., Woodard, K.J., Mayuranathan, T., Lazzarotto, C.R., Li, Y., Sheppard-Tillman, H., Porter, S.N., Yao, Y., Mayberry, K., et al. (2021). Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295-302. https://doi.org/10.1038/s41586-021-03609-w
  28. Pauling, L., Itano, H.A., Singer, S.J., and Weiss, I.G. (1949). Sickle cell anemia a molecular disease. Science 110, 543-548. https://doi.org/10.1126/science.110.2865.543
  29. Stadtmauer, E.A., Fraietta, J.A., Davis, M.M., Cohen, A.D., Weber, K.L., Lancaster, E., Mangan, P.A., Kulikovskaya, I., Gupta, M., Chen, F., et al. (2020). CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365.
  30. Tebas, P., Jadlowsky, J.K., Shaw, P.A., Tian, L., Esparza, E., Brennan, A.L., Kim, S., Naing, S.Y., Richardson, M.W., Vogel, A.N., et al. (2021). CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. J. Clin. Invest. 131, e144486.
  31. Tebas, P., Stein, D., Tang, W.W., Frank, I., Wang, S.Q., Lee, G., Spratt, S.K., Surosky, R.T., Giedlin, M.A., Nichol, G., et al. (2014). Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901-910. https://doi.org/10.1056/NEJMoa1300662
  32. Wang, D., Zhang, F., and Gao, G. (2020). CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181, 136-150. https://doi.org/10.1016/j.cell.2020.03.023
  33. World Health Organization (2021a). Human Genome Editing: Recommendations (Geneva: World Health Orgainzation).
  34. World Health Organization (2021b). Human Genome Editing: Position Paper (Geneva: World Health Orgainzation).
  35. Wilson, J.T., Wilson, L.B., deRiel, J.K., Villa-komaroff, L., Efstratiadis, A., Forget, B.G., and Weissman, S.M. (1978). Insertion of synthetic copies of human globin genes into bacterial plasmids. Nucleic Acids Res. 5, 563-581. https://doi.org/10.1093/nar/5.2.563
  36. Wilson, R.C. and Carroll, D. (2019). The daunting economics of therapeutic genome editing. CRISPR J. 2, 280-284. https://doi.org/10.1089/crispr.2019.0052
  37. Xue, C. and Greene, E.C. (2021). DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. 37, 639-656. https://doi.org/10.1016/j.tig.2021.02.008