DOI QR코드

DOI QR Code

Clinical Evaluation of a Rapid Diagnostic Test Kit for Canine Parvovirus and Coronavirus

개 파보바이러스와 코로나바이러스 진단을 위한 신속진단키트의 임상적 유용성

  • Chaeyeong MIN (Department of Clinical Laboratory Science, Dong-eui University) ;
  • Won-Shik KIM (Department of Clinical Laboratory Science, Daejeon Health Institute of Technology) ;
  • Chom-Kyu CHONG (GenBody Inc) ;
  • Yong LIM (Department of Clinical Laboratory Science, Dong-eui University)
  • 민채영 (동의대학교 임상병리학과) ;
  • 김원식 (대전보건대학교 임상병리과) ;
  • 정점규 (젠바디) ;
  • 임용 (동의대학교 임상병리학과)
  • Received : 2022.12.20
  • Accepted : 2023.03.08
  • Published : 2023.03.31

Abstract

Canine parvovirus type 2 (CPV-2) and canine coronavirus (CCoV) are major pathogens that can induce gastroenteritis in dogs. They are highly contagious and have a high morbidity rate. There are no specific treatments available for them to date. Therefore, rapid and accurate diagnosis becomes essential. The rapid diagnostic test (RDT) for animals can be used widely in the field because it is fast and easy to use for diagnosis. Thus, this study aimed to clinically evaluate and confirm the clinical utility of CPV-2/CCoV RDT. The parameters evaluated included the limit of detection (LoD), cross-reactivity, interference, sensitivity, specificity, negative likelihood ratio (NLR), and kappa value. The results revealed that the LoD values for CPV-2 and CCoV were 9.7×10 50% tissue culture infectious dose (TCID50)/mL and 2.5×102 TCID50/mL, respectively. There was no cross-reactivity with nine pathogens or interference by interfering materials. The RDT showed a sensitivity of 90.0%, a specificity of 100.0%, NLR of 0.1, and a kappa value of 0.90 for diagnosing both viruses. In conclusion, CPV-2/CCoV RDT is useful as a screening test because of its high sensitivity, specificity, kappa value, and low NLR.

개 파보바이러스(canine parvovirus type 2, CPV-2)와 코로나바이러스(canine coronavirus, CCoV)는 개에서 위장관염을 일으키는 주요 병원체이다. 두 바이러스는 전염성과 이환율이 높고 특정한 치료법이 없어 신속 정확한 진단이 필요하다. 동물용 신속진단키트 (rapid diagnostic test, RDT)는 빠르고, 간편하여 진료현장에서 널리 활용되고 있다. 이에 본 연구에서는 성능평가를 통해 CPV-2/CCoV RDT의 임상적 유용성을 확인하고자 하였다. 성능평가 항목으로 최소검출한계(limit of detection, LoD), 교차반응, 간섭, 민감도, 특이도, 음성우도비(negative likelihood ratio, NLR), 카파통계량(kappa value, κ) 등을 확인하였다. 성능평가 결과, LoD는 CPV-2 9.7×10 50% tissue culture infections dose (TCID50)/mL, CCoV 2.5×102 TCID50/mL로 나타났다. 병원체 9종에 의한 교차반응과 간섭물질에 대한 간섭은 관찰되지 않았다. RDT는 두 바이러스의 검출에 있어 민감도 90.0%, 특이도 100.0%, NLR=0.1, κ=0.90으로 나타났다. 결론적으로 CPV-2/CCoV RDT는 높은 민감도, 특이도, κ와 낮은 NLR을 보여 선별검사로써 유용할 것으로 생각된다.

Keywords

Acknowledgement

This article is a revision of the first author's master's thesis.

References

  1. Duijvestijn M, Mughini-Gras L, Schuurman N, Schijf W, Wagenaar JA, Egberink H. Enteropathogen infections in canine puppies: (co-)occurrence, clinical relevance and risk factors. Vet Microbiol. 2016;195:115-122. https://doi.org/10.1016/j.vetmic.2016.09.006 
  2. Cavalli A, Desario C, Kusi I, Mari V, Lorusso E, Cirone F, et al. Detection and genetic characterization of Canine parvovirus and Canine coronavirus strains circulating in district of Tirana in Albania. J Vet Diagn Invest. 2014;26:563-566. https://doi.org/10.1177/1040638714538965 
  3. Ogbu KI, Anene BM, Nweze NE, Okoro JI, Danladi MM, Ochai SO. Canine parvovirus: a review. Int J Sci Appl Res. 2017;2:74-95. 
  4. Mylonakis ME, Kalli I, Rallis TS. Canine parvoviral enteritis: an update on the clinical diagnosis, treatment, and prevention. Vet Med (Auckl). 2016;7:91-100. https://doi.org/10.2147/VMRR.S80971 
  5. Ntafis V, Mari V, Decaro N, Papanastassopoulou M, Pardali D, Rallis TS, et al. Canine coronavirus, Greece. Molecular analysis and genetic diversity characterization. Infect Genet Evol. 2013;16:129-136. https://doi.org/10.1016/j.meegid.2013.01.014 
  6. Pratelli A. The evolutionary processes of canine coronaviruses. Adv Virol. 2011;2011:562831. https://doi.org/10.1155/2011/562831 
  7. Licitra BN, Duhamel GE, Whittaker GR. Canine enteric coronaviruses: emerging viral pathogens with distinct recombinant spike proteins. Viruses. 2014;6:3363-3376. https://doi.org/10.3390/v6083363 
  8. Shima FK, Gberindyer FA, Tion MT, Fagbohun OA, Omobowale TO, Nottidge HO. Diagnostic performance of a rapid immunochromatographic test kit for detecting canine parvovirus infection. Top Companion Anim Med. 2021;45:100551. https://doi.org/10.1016/j.tcam.2021.100551 
  9. Kantere MC, Athanasiou LV, Spyrou V, Kyriakis CS, Kontos V, Chatzopoulos DC, et al. Diagnostic performance of a rapid in-clinic test for the detection of Canine Parvovirus under different storage conditions and vaccination status. J Virol Methods. 2015;215-216:52-55. https://doi.org/10.1016/j.jviromet.2015.02.012 
  10. Tinky SS, Ambily R, Nair SR, Mini M. Utility of a rapid immunochromatographic strip test in detecting canine parvovirus infection compared with polymerase chain reaction. Vet World. 2015;8:523-526. https://doi.org/10.14202/vetworld.2015.523-526 
  11. Howson ELA, Soldan A, Webster K, Beer M, Zientara S, Belak S, et al. Technological advances in veterinary diagnostics: opportunities to deploy rapid decentralised tests to detect pathogens affecting livestock. Rev Sci Tech. 2017;36:479-498. https://doi.org/10.20506/rst.36.2.2668 
  12. Kang KM, Suh TY, Kang HG, Moon JS. Trends and prospect of the market for veterinary medical devices in Korea. J Vet Clin. 2019;36:1-6. https://doi.org/10.17555/jvc.2019.02.36.1.1 
  13. Park HM, Lee CM, et al. Safety information and cases of adverse effects of veterinary medical devices. Gimcheon: Animal and Plant Quarantine Agency; 2017. 
  14. Kim HS. Rapid tests for the diagnosis of viral infections. Korean J Med. 2021;96:415-420. https://doi.org/10.3904/kjm.2021.96.5.415 
  15. Clinical and Laboratory Standards Institute. EP17-A. Protocols for determination of limits of detection and limits of quantitation; approved guideline. Wayne: Clinical and Laboratory Standards Institute; 2004. 
  16. Clinical and Laboratory Standards Institute. EP07-A2. Interference testing in clinical chemistry; approved guideline. 2nd ed. Wayne: Clinical and Laboratory Standards Institute; 2005. 
  17. Ji I. Industry status of companion animal in the United States. World Agric. 2019;224:45-78. 
  18. Kim E, Choe C, Yoo JG, Oh SI, Jung Y, Cho A, et al. Major medical causes by breed and life stage for dogs presented at veterinary clinics in the Republic of Korea: a survey of electronic medical records. PeerJ. 2018;6:e5161. https://doi.org/10.7717/peerj.5161 
  19. Martini M, Fenati M, Agosti M, Cassini R, Drigo M, Ferro N, et al. A surveillance system for diseases of companion animals in the Veneto region (Italy). Rev Sci Tech. 2017;36:1007-1014. https://doi.org/10.20506/rst.36.3.2732 
  20. Zhao Y, Lin Y, Zeng X, Lu C, Hou J. Genotyping and pathobiologic characterization of canine parvovirus circulating in Nanjing, China. Virol J. 2013;10:272. https://doi.org/10.1186/1743-422X-10-272 
  21. Gan J, Tang Y, Lv H, Xiong W, Tian X. Identification and phylogenetic analysis of two canine coronavirus strains. Anim Dis. 2021;1:10. https://doi.org/10.1186/s44149-021-00013-9 
  22. Decaro N, Desario C, Billi M, Lorusso E, Colaianni ML, Colao V, et al. Evaluation of an in-clinic assay for the diagnosis of canine parvovirus. Vet J. 2013;198:504-507. https://doi.org/10.1016/j.tvjl.2013.08.032 
  23. Song CS, Sung HH, Kim JH, Kim DE, Park CE, Yoon JS. Fusion analytical sensitivity of rapid influenza antigen limit of detection tests for human influenza virus. J Korea Converg Soc. 2018;9:165-171. https://doi.org/10.15207/JKCS.2018.9.3.165 
  24. Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Baggiani C. Multiplex lateral flow immunoassay: an overview of strategies towards high-throughput point-of-need testing. Biosensors (Basel). 2018;9:2. https://doi.org/10.3390/bios9010002 
  25. Li J, Macdonald J. Multiplexed lateral flow biosensors: technological advances for radically improving point-of-care diagnoses. Biosens Bioelectron. 2016;83:177-192. https://doi.org/10.1016/j.bios.2016.04.021 Erratum in: Biosens Bioelectron. 2016;85:998-999. 
  26. Yoon SJ, Seo KW, Song KH. Clinical evaluation of a rapid diagnostic test kit for detection of canine coronavirus. Korean J Vet Res. 2018;58:27-31. https://doi.org/10.14405/kjvr.2018.58.1.27 
  27. Kim WS, Chong CK, Kim HY, Lee GC, Jeong W, An DJ, et al. Development and clinical evaluation of a rapid diagnostic kit for feline leukemia virus infection. J Vet Sci. 2014;15:91-97. https://doi.org/10.4142/jvs.2014.15.1.91 
  28. Attia J. Moving beyond sensitivity and specificity: using likelihood ratios to help interpret diagnostic tests. Aust Prescr. 2003;26:111-113. https://doi.org/10.18773/austprescr.2003.082 
  29. Kong KA. Statistical methods: reliability assessment and method comparison. Ewha Med J. 2017;40:9-16. https://doi.org/10.12771/emj.2017.40.1.9 
  30. Moon JS, Kang KM, et al. Guideline for performance evaluation and stability test of in vitro diagnostic veterinary medical reagent. Gimcheon: Animal and Plant Quarantine Agency; 2019.