DOI QR코드

DOI QR Code

Finite Element Analysis Through Model Change Method of Damaged Reinforced Concrete Beams With Externally Post-tensioning Steel Rods

외적 포스트텐셔닝 강봉 보강한 손상입은 철근콘크리트 보의 모델전환기법을 통한 유한요소해석

  • Lee, Swoo-Heon (Department of Convergence and Fusion System Engineering, Kyungpook National University)
  • 이수헌 (경북대학교 융복합시스템공학과)
  • Received : 2023.01.10
  • Accepted : 2023.03.20
  • Published : 2023.04.30

Abstract

Several important options for modeling damaged post-tensioned reinforced concrete (RC) beams and reproducing a concrete's behavior via ABAQUS software was presented in this study. The first thing considered was a material model suitable for concrete, including compressive and tensile behavior, stress-strain relationship, and concrete damaged plasticity (CDP). The CDP model required concrete tensile cracking and compressive crushing damage parameters and additional variables such as dilation angle (ψ), plastic potential eccentricity (ϵ), the ratio of the bi-axial compressive strength to uni-axial compressive strength (fb0/fc0), the ratio of the second stress invariant on the tensile meridian to that on the compressive meridian (K), and viscosity parameter (µ). The second item was geometry related to concrete, reinforcements, and post-tensioning system while the third item involved the algorithms for model change and restart to apply the post-tensioning steel rod. The validity of the applied model was confirmed through the experimental results of the post-tensioned RC beams under a three-point bending moment.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. 2021R1F1A1062907)이고, 2022학년도 경북대학교 연구년 교수 연구비에 의하여 연구되었음. 또한 유한요소해석을 도와준 경북대학교 강구조 및 구조동역학 연구실 신경재 교수님과 이희두 박사에게도 감사의 말을 전함.

References

  1. Abu Tahnat, Y.B., Dwaikat, M.M.S., & Samaaneh, M.A. (2018). Effect of using CFRP wraps on the strength and ductility behaviors of exterior reinforced concrete joint, Composite Structures, 201, 721-739, doi.org/10.1016/j.compstruct.2018.06.082
  2. ACI Committee 318 (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19), American Concrete Institute (ACI).
  3. Ahmed, A. (2014). Modeling of a reinforced concrete beam subjected to impact vibration using ABAQUS, International Journal of Civil and Structural Engineering, 4(3), 227-236.
  4. Bondy, K.D. (2005). Externally applied post-tensioning systems, Structure Magazine, 14-17.
  5. Chaudhari, S.V., & Chakrabarti, M.A. (2012). Modeling of concrete for nonlinear analysis using finite element code ABAQUS, International Journal of Computer Applications, 44(7), 14-18.
  6. Chen, H., Xu, B., Wang, J., Nie, X., & Mo, Y.-L. (2020). XFEM-based multiscale simulation on monotonic and hysteretic behavior of reinforced-concrete columns, Applied Sciences, 10, 7899, doi.org/10.3390/app10217899
  7. Cuong-Le, T., Minh, H.-L., & Sang-To, T. (2022). A nonlinear concrete damaged plasticity model for simulation reinforced concrete structures using ABAQUS, Frattura ed Integrita Strutturale, 16(59), 232-242, doi.org/10.3221/IGF-ESIS.59.17
  8. Dehn, F., Beushausen, H.-D., Alexander, M.G., & Moyo, P. (2016). Concrete repair, rehabilitation and retrofitting IV, Proceedings of the 4th International Conference on Concrete Repair, Rehabilitation and Retorofitting (ICCRRR 2015), Leipzig, Germany, 5-7 October, 2015.
  9. Dere, Y., & Koroglu, M.A. (2017). Nonlinear FE modeling of reinforced concrete, International Journal of Structural and Civil Engineering Research, 6(1), 71-74, http://doi.org/10.18178/ijscer.6.1.71-74
  10. DS Simulia Corp. (2013a). ABAQUS/CAE User's Guide, Dassault Systemes (DS) Simulia Corp., RI, USA.
  11. DS Simulia Corp. (2013b). ABAQUS Analysis User's Guide, Dassault Systemes (DS) Simulia Corp., RI, USA.
  12. DS Simulia Corp. (2013c). ABAQUS Example Problems Guide, Dassault Systemes (DS) Simulia Corp., RI, USA.
  13. DS Simulia Corp. (2013d). ABAQUS Theory Guide, Dassault Systemes (DS) Simulia Corp., RI, USA.
  14. Federal Emergency Management Agency (FEMA). (1997). NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings (FEMA 274), Washington, D.C.
  15. Ledesma, T. (2019). Replaceable Grouted External Post-Tensioned Tendons(Report No. FHWA-HIF-19-067), Federal Highway Administration Office of Infrastructure - Bridge and Structures, Washington, DC., USA.
  16. Lee, C.-S. (2016). Experimental study on post-tensioned reinforced concrete beams using external steel rods, MS thesis, Kyungpook National University, Korea.
  17. Lee, S.-H, Abolmaali, A., Shin, K.-J., & Lee, H.-D. (2020). ABAQUS modeling for post-tensioned reinforced concrete beams, Journal of Building Engineering, 30, 101273.
  18. Lee, S.-H., Lee, H.-D., Lee, C.-S., & Shin, K.-J. (2017). Flexural strengthening of damaged reinforced concrete (RC) beams using externally post-tensioning steel rods, Journal of the Architectural of Korea, Structure and Construction Section, 33(7), 3-11, doi.org/10.5659/JAIK_SC.2017.33.7.3
  19. Lee, S.-H, Shin, K.-J., & Kang, T.H.-K. (2014). Shear Strengthening of continuous concrete beams using externally prestressed steel bar, PCI Journal, 59(4), 77-92, doi.org/10.15554/pcij.09012014.77.92
  20. Hajajili, M.H. (1993). Strengthening of concrete beams by external prestressing, PCI Journal, 38(6), 76-88, doi.org/10.15554/pcij.11011993.76.88
  21. Hasani, S.A., Nasrellah, H.A., & Abdulraeg, A.A. (2021). Numerical study of reinforced concrete beam by using ABAQUS software, International Journal of Innovative Technology and Interdisciplinary Sciences, 4(3), 733-741, doi.org/10.15157/IJITIS.2021.4.3.733-741
  22. Hemamathi, A., Sukumar, B., & Hambrish Guru Chantrakant, R.B. (2022). Numerical analysis of RCC beam using ABAQUS, IOP Conference Series : Earth and Environmental Science, 1084(1), 012077, http://doi.org/10.1088/1755-1315/1084/1/012077
  23. Hognestad, E. (1951). A Study of Combined Bending and Axial Load in Reinforced Concrete Members (Bulletin No. 399), Engineering Experimental Station, University of Illinois, Urban, IL, USA.
  24. Husain, M., Eisa, A.S., & Hegazy, M.M. (2019). Strengthening of reinforced concrete shear walls with opening using carbon fiber-reinforced polymers, International Jouranl of Advanced Structural Engineering, 2019(11), 129-150, https://doi.org/10.1007/s40091-019-0216-6
  25. Jankowiak, T., & Lodygowski, T. (2005). Identification of parameters of concrete damage plasticity constitutive model, Foundations of Civil and Environmental Engineering, (6), 53-68.
  26. Jasim, W.A., Abu Tahnat, Y.B., & Halahla, A.M. (2020). Behavior of reinforced concrete deep beam with web openings strengthened with (CFRP) sheet, Structures, 26, 785-800, doi.org/10.1016/j.istruc.2020.05.003
  27. Kmiecik, P., & Kaminski, M. (2011). Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration, Archives of Civil and Mechanical Engineering, 6(3), 623-636. https://doi.org/10.1016/S1644-9665(12)60105-8
  28. Liu, T., Qin, S., Zou, D., Song, W., & Teng, J. (2018). Mesoscopic modeling method of concrete based on statistical analysis of CT images, Construction and Building Materials, 192, 429-441, doi.org/10.1016/j.conbuildmat.2018.10.136
  29. Manisekar, R. (2018). Effect of external post-tensioning in retrofitting of RC beams, Journal of the Institution of Engineering, 99, 495-501, doi.org/10.1007/s40030-018-0312-9
  30. Nagy, N.M., Eltehawy, E.A., Elhanafy, H.M., & Eldesouky, A. (2009). Numerical modeling of geometrical analysis for underground structures, Proceedings of the 13th International Conference on Aerospace Sciences & Aviation Technology (ASAT-13), May 26-28 2009, Cairo, Egypt.
  31. Papanikolaou, V.K., & Kappos, A.J. (2007). Confinement- sensitive plasticity constitutive model for concrete in triaxial compression, International Journal of Solids and Structures, 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022
  32. Raza, A., Khan, Q.Z., & Ahmad, A. (2019). Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS, Advances in Civil Engineering, 2019, Article ID 1745341, doi.org/10.1155/2019/1745341
  33. Saleh, A.E., Jalali, H.H., Pokharel A., & Abolmaali, A. (2021). Deformation of buried large diameter steel pipes during staged construction and compaction-case study and finite element analysis, Transportation Geotechnics, 31, 100649, doi.org/10.1016/j.trgeo.2021.100649
  34. Seow, P.E.C., & Swaddiwudhipong, S. (2005). Failure surface for concrete under multiaxial load - a unified approach, Journal of Materials in Civil Engineering, 17(2), 219-228. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(219)
  35. Shin, K.-J., Lee, S.-H., & Kang, T.H.-K. (2014). External posttensioning of reinforced concrete beams using a V-shaped steel rod system, Journal of Structural Engineering-ASCE, 140(3), 04013067, doi.org/10.1061/(ASCE)ST.1943-541X.0000824
  36. Shiua, D., Ze, Q., & Li, W. (2015). Nonlinear analysis of reinforced concrete beam bending failure experimentation based on ABAQUS, International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015), 440-444, doi.org/10.2991/ICISMME-15.2015.88
  37. Sinaei, H., Shariati, M., Abna, A.H., Aghaei, M., & Shariati, A. (2012). Evaluation of reinforced concrete beam behaviour using finite element analysis by ABAQUS, Scientific Research and Essays, 7(21), 2002-2009.
  38. Szczecina, M., & Winnicki, A. (2016). Selected aspects of computer modeling of reinforced concrete structures, Archives of Civil Engineering, 62(1), doi.org/10.1515/ace-2015-0051
  39. Tao, Z., Wang, Z.B., & Yu, Q. (2013). Finite element modelling of concrete-filled steel stub columns under axial compression, Journal of Constructional Steel Research, 89, 121~131. https://doi.org/10.1016/j.jcsr.2013.07.001
  40. Teng, J.G., Huang, Y.L. Lam, L., & Ye, L.P. (2007). Theoretical model for fiber reinforced polymer-confined concrete, Journal of Composites for Construction, 11(2), 201-219. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)
  41. Xia, Y., We, W., Yang, Y., & Fu, X. (2021). Mesoscopic study of concrete with random aggregate model using phase field method, Construction and Building Materials, 310, 125199, doi.org/10.1016/j.conbuildmat.2021.125199
  42. Yu, T., Teng, J.G., Wong, Y.L., & Dong, S.L. (2010). Finite element modeling of confined concrete - I: Drucker-Prager type plasticity model, Engineering Structure, 32(3), 665-679.