과제정보
This work was supported by an internal funding from the CKD Research Institute and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021M3A9G2015885) and by the Technological Innovation R&D Program (S3305828) funded by the Ministry of SMEs and Startups (MSS, Korea). We thank Dongchul Shin (iPS Bio) for the interpretation of electrophysiological data analysis.
참고문헌
- Pan L and Feigin A (2021) Huntington's disease: new frontiers in therapeutics. Curr Neurol Neurosci Rep 21, 10 https://doi.org/10.1007/s11910-020-01089-5
- Ghosh R and Tabrizi SJ (2018) Clinical features of Huntington's disease. Adv Exp Med Biol 1049, 1-28 https://doi.org/10.1007/978-3-319-71779-1_1
- Arrowsmith CH, Bountra C, Fish PV, Lee K and Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11, 384-400 https://doi.org/10.1038/nrd3674
- Kazantsev AG and Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7, 854-868 https://doi.org/10.1038/nrd2681
- Bishton MJ, Harrison SJ, Martin BP et al (2011) Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood 117, 3658-3668 https://doi.org/10.1182/blood-2010-11-318055
- Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I and Piekarz RL (2010) Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel) 3, 2751-2767 https://doi.org/10.3390/ph3092751
- Noack M, Leyk J and Richter-Landsberg C (2014) HDAC6 inhibition results in tau acetylation and modulates tau phosphorylation and degradation in oligodendrocytes. Glia 62, 535-547 https://doi.org/10.1002/glia.22624
- Zhang Y, Li N, Caron C et al (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22, 1168-1179 https://doi.org/10.1093/emboj/cdg115
- Reed NA, Cai D, Blasius TL et al (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16, 2166-2172 https://doi.org/10.1016/j.cub.2006.09.014
- Trushina E, Dyer RB, Badger JD 2nd et al (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24, 8195-8209 https://doi.org/10.1128/MCB.24.18.8195-8209.2004
- Dompierre JP, Godin JD, Charrin BC et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci 27, 3571-3583 https://doi.org/10.1523/JNEUROSCI.0037-07.2007
- Zhang Y, Kwon S, Yamaguchi T et al (2008) Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 28, 1688-1701 https://doi.org/10.1128/MCB.01154-06
- Hinckelmann MV, Zala D and Saudou F (2013) Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. Trends Cell Biol 23, 634-643 https://doi.org/10.1016/j.tcb.2013.08.007
- Govindarajan N, Rao P, Burkhardt S et al (2013) Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med 5, 52-63 https://doi.org/10.1002/emmm.201201923
- Selenica ML, Benner L, Housley SB et al (2014) Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res Ther 6, 12
- d'Ydewalle C, Krishnan J, Chiheb DM et al (2011) HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 17, 968-974 https://doi.org/10.1038/nm.2396
- Yang SS, Zhang R, Wang G and Zhang YF (2017) The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer's disease. Transl Neurodegener 6, 19
- Reddy RG, Surineni G, Bhattacharya D et al (2019) Crafting carbazole-based vorinostat and tubastatin-a-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega 4, 17279-17294 https://doi.org/10.1021/acsomega.9b01950
- Choi H, Kim HJ, Yang J et al (2020) Acetylation changes tau interactome to degrade tau in Alzheimer's disease animal and organoid models. Aging Cell 19, e13081
- Ha N, Choi YI, Jung N et al (2020) A novel histone deacetylase 6 inhibitor improves myelination of Schwann cells in a model of Charcot-Marie-Tooth disease type 1A. Br J Pharmacol 177, 5096-5113 https://doi.org/10.1111/bph.15231
- Crook ZR and Housman D (2011) Huntington's disease: can mice lead the way to treatment? Neuron 69, 423-435 https://doi.org/10.1016/j.neuron.2010.12.035
- Sapp E, Valencia A, Li X et al (2012) Native mutant huntingtin in human brain: evidence for prevalence of full-length monomer. J Biol Chem 287, 13487-13499 https://doi.org/10.1074/jbc.M111.286609
- Slow EJ, van Raamsdonk J, Rogers D et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12, 1555-1567 https://doi.org/10.1093/hmg/ddg169
- Joshi PR, Wu NP, Andre VM et al (2009) Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease. J Neurosci 29, 2414-2427 https://doi.org/10.1523/JNEUROSCI.5687-08.2009
- Butler KV, Kalin J, Brochier C, Vistoli G, Langley B and Kozikowski AP (2010) Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 132, 10842-10846 https://doi.org/10.1021/ja102758v
- Choi D, Li D and Raisman G (2002) Fluorescent retrograde neuronal tracers that label the rat facial nucleus: a comparison of Fast Blue, Fluoro-ruby, Fluoroemerald, Fluoro-Gold and DiI. J Neurosci Methods 117, 167-172 https://doi.org/10.1016/S0165-0270(02)00098-5
- Fernandez-Nogales M, Cabrera JR, Santos-Galindo M et al (2014) Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 20, 881-885 https://doi.org/10.1038/nm.3617
- Avila J, Lucas JJ, Perez M and Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84, 361-384 https://doi.org/10.1152/physrev.00024.2003