• Title/Summary/Keyword: CKD-504

Search Result 2, Processing Time 0.015 seconds

A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of huntington's disease

  • Endan Li;Jiwoo Choi;Hye-Ri Sim;Jiyeon Kim;Jae Hyun Jun;Jangbeen Kyung;Nina Ha;Semi Kim;Keun Ho Ryu;Seung Soo Chung;Hyun Sook Kim;Sungsu Lee;Wongi Seol;Jihwan Song
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.178-183
    • /
    • 2023
  • Huntington's disease (HD) is a neurodegenerative disorder, of which pathogenesis is caused by a polyglutamine expansion in the amino-terminus of huntingtin gene that resulted in the aggregation of mutant HTT proteins. HD is characterized by progressive motor dysfunction, cognitive impairment and neuropsychiatric disturbances. Histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase, has been shown to induce transport- and release-defect phenotypes in HD models, whilst treatment with HDAC6 inhibitors ameliorates the phenotypic effects of HD by increasing the levels of α-tubulin acetylation, as well as decreasing the accumulation of mutant huntingtin (mHTT) aggregates, suggesting HDAC6 inhibitor as a HD therapeutics. In this study, we employed in vitro neural stem cell (NSC) model and in vivo YAC128 transgenic (TG) mouse model of HD to test the effect of a novel HDAC6 selective inhibitor, CKD-504, developed by Chong Kun Dang (CKD Pharmaceutical Corp., Korea). We found that treatment of CKD-504 increased tubulin acetylation, microtubule stabilization, axonal transport, and the decrease of mutant huntingtin protein in vitro. From in vivo study, we observed CKD-504 improved the pathology of Huntington's disease: alleviated behavioral deficits, increased axonal transport and number of neurons, restored synaptic function in corticostriatal (CS) circuit, reduced mHTT accumulation, inflammation and tau hyperphosphorylation in YAC128 TG mouse model. These novel results highlight CKD-504 as a potential therapeutic strategy in HD.

Therapeutic Potential of CKD-504, a Novel Selective Histone Deacetylase 6 Inhibitor, in a Zebrafish Model of Neuromuscular Junction Disorders

  • Jeong, Hui Su;Kim, Hye Jin;Kim, Deok-Ho;Chung, Ki Wha;Choi, Byung-Ok;Lee, Ji Eun
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.231-242
    • /
    • 2022
  • The neuromuscular junction (NMJ), which is a synapse for signal transmission from motor neurons to muscle cells, has emerged as an important region because of its association with several peripheral neuropathies. In particular, mutations in GARS that affect the formation of NMJ result in Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. These disorders are mainly considered to be caused by neuronal axon abnormalities; however, no treatment is currently available. Therefore, in order to determine whether the NMJ could be targeted to treat neurodegenerative disorders, we investigated the NMJ recovery effect of HDAC6 inhibitors, which have been used in the treatment of several peripheral neuropathies. In the present study, we demonstrated that HDAC6 inhibition was sufficient to enhance movement by restoring NMJ impairments observed in a zebrafish disease model. We found that CKD-504, a novel HDAC6 inhibitor, was effective in repairing NMJ defects, suggesting that treatment of neurodegenerative diseases via NMJ targeting is possible.