과제정보
We thank the Caenorhabditis Genetics Center (NIH Office of Research Infrastructure Programs, P40 OD010440) and the National BioResource Project (Japan) for strains. We also thank Jinmahn Kim and Ji-Won Lee for technical supports and K. Kim lab members for helpful comments and discussion on the manuscript. This work was supported by the National Research Foundation of Korea (NRF-2020R1A4A1019436, NRF-2021R1A2C1008418) (K.K.) and (2022R1F1A1071248) (J.L.).
참고문헌
- Scott-Solomon E, Boehm E and Kuruvilla R (2021) The sympathetic nervous system in development and disease. Nat Rev Neurosci 22, 685-702 https://doi.org/10.1038/s41583-021-00523-y
- Hobert O (2008) Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc Natl Acad Sci U S A 105, 20067-20071 https://doi.org/10.1073/pnas.0806070105
- Hobert O and Kratsios P (2019) Neuronal identity control by terminal selectors in worms, flies, and chordates. Curr Opin Neurobiol 56, 97-105 https://doi.org/10.1016/j.conb.2018.12.006
- Sulston JE, Schierenberg E, White JG and Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119 https://doi.org/10.1016/0012-1606(83)90201-4
- Hobert O, Glenwinkel L and White J (2016) Revisiting neuronal cell type classification in Caenorhabditis elegans. Curr Biol 26, 1197-1203 https://doi.org/10.1016/j.cub.2016.10.027
- Hobert O (2016) Terminal Selectors of Neuronal Identity. Curr Top Dev Biol 116, 455-475 https://doi.org/10.1016/bs.ctdb.2015.12.007
- Leyva-Diaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L and Hobert O (2020) Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. Wiley Interdiscip Rev Dev Biol 9, e374
- Hobert O (2021) Homeobox genes and the specification of neuronal identity. Nat Rev Neurosci 22, 627-636 https://doi.org/10.1038/s41583-021-00497-x
- Hobert O (2011) Maintaining a memory by transcriptional autoregulation. Curr Biol 21, 146-147 https://doi.org/10.1016/j.cub.2011.01.005
- White JG, Southgate E, Thomson JN and Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314, 1-340 https://doi.org/10.1098/rstb.1986.0056
- Moon KM, Kim J, Seong Y et al (2021) Proprioception, the regulator of motor function. BMB Rep 54, 393-402 https://doi.org/10.5483/BMBRep.2021.54.8.052
- Hart AC, Sims S and Kaplan JM (1995) Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82-85 https://doi.org/10.1038/378082a0
- Vidal B, Santella A, Serrano-Saiz E, Bao Z, Chuang CF and Hobert O (2015) C. elegans SoxB genes are dispensable for embryonic neurogenesis but required for terminal differentiation of specific neuron types. Development 142, 2464-2477 https://doi.org/10.1242/dev.125740
- Reilly MB, Cros C, Varol E, Yemini E and Hobert O (2020) Unique homeobox codes delineate all the neuron classes of C. elegans. Nature 584, 595-601 https://doi.org/10.1038/s41586-020-2618-9
- Masoudi N, Yemini E, Schnabel R and Hobert O (2021) Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in Caenorhabditis elegans. Development 148, dev119224
- Kim K and Li C (2004) Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475, 540-550 https://doi.org/10.1002/cne.20189
- Franchini A, Imbriano C, Peruzzi E, Mantovani R and Ottaviani E (2005) Expression of the CCAAT-binding factor NF-Y in Caenorhabditis elegans. J Mol Histol 36, 139-145 https://doi.org/10.1007/s10735-004-6017-6
- Deng H, Sun Y, Zhang Y et al (2007) Transcription factor NFY globally represses the expression of the C. elegans Hox gene Abdominal-B homolog egl-5. Dev Biol 308, 583-592 https://doi.org/10.1016/j.ydbio.2007.05.021
- Milton AC, Packard AV, Clary L and Okkema PG (2013) The NF-Y complex negatively regulates Caenorhabditis elegans tbx-2 expression. Dev Biol 382, 38-47 https://doi.org/10.1016/j.ydbio.2013.08.001
- Nardini M, Gnesutta N, Donati G et al (2013) Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell 152, 132-143 https://doi.org/10.1016/j.cell.2012.11.047
- C. elegans Deletion Mutant Consortium (2012) Large-scale screening for targeted knockouts in the caenorhabditis elegans genome. G3 (Bethesda) 2, 1415-1425 https://doi.org/10.1534/g3.112.003830
- Serrano-Saiz E, Poole RJ, Felton T, Zhang F, De La Cruz ED and Hobert O (2013) Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155, 659-673 https://doi.org/10.1016/j.cell.2013.09.052
- Tavernarakis N, Shreffler W, Wang S and Driscoll M (1997) unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18, 107-119 https://doi.org/10.1016/S0896-6273(01)80050-7
- Maduro M and Pilgrim D (1995) Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977-988 https://doi.org/10.1093/genetics/141.3.977
- Kratsios P, Stolfi A, Levine M and Hobert O (2011) Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci 15, 205-214 https://doi.org/10.1038/nn.2989
- Hurd DD, Miller RM, Nunez L and Portman DS (2010) Specific alpha- and beta-tubulin isotypes optimize the functions of sensory Cilia in Caenorhabditis elegans. Genetics 185, 883-896 https://doi.org/10.1534/genetics.110.116996
- Fire A, Harrison SW and Dixon D (1990) A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189-198 https://doi.org/10.1016/0378-1119(90)90224-F
- Kim J, Yeon J, Choi SK et al (2015) The evolutionarily conserved LIM homeodomain protein LIM-4/LHX6 specifies the terminal identity of a cholinergic and peptidergic C. elegans sensory/inter/motor neuron-type. PLoS Genet 11, e1005480
- Hammarlund M, Hobert O, Miller DM 3rd and Sestan N (2018) The CeNGEN project: the complete gene expression map of an entire nervous system. Neuron 99, 430-433 https://doi.org/10.1016/j.neuron.2018.07.042
- Oh M, Kim SY, Byun JS et al (2021) Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells. BMB Rep 54, 626-631 https://doi.org/10.5483/BMBRep.2021.54.12.154
- Dolfini D, Gatta R and Mantovani R (2012) NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 47, 29-49 https://doi.org/10.3109/10409238.2011.628970
- Benatti P, Chiaramonte ML, Lorenzo M et al (2016) NF-Y activates genes of metabolic pathways altered in cancer cells. Oncotarget 7, 1633-1650 https://doi.org/10.18632/oncotarget.6453
- Ly LL, Suyari O, Yoshioka Y, Tue NT, Yoshida H and Yamaguchi M (2013) dNF-YB plays dual roles in cell death and cell differentiation during Drosophila eye development. Gene 520, 106-118 https://doi.org/10.1016/j.gene.2013.02.036
- Yamaguchi M, Ali MS, Yoshioka Y, Ly LL and Yoshida H (2017) NF-Y in invertebrates. Biochim Biophys Acta Gene Regul Mech 1860, 630-635 https://doi.org/10.1016/j.bbagrm.2016.10.008
- Dorn A, Bollekens J, Staub A, Benoist C and Mathis D (1987) A multiplicity of CCAAT box-binding proteins. Cell 50, 863-872 https://doi.org/10.1016/0092-8674(87)90513-7
- Martyn GE, Quinlan KGR and Crossley M (2017) The regulation of human globin promoters by CCAAT box elements and the recruitment of NF-Y. Biochim Biophys Acta Gene Regul Mech 1860, 525-536 https://doi.org/10.1016/j.bbagrm.2016.10.002